Présentation
Auteur(s)
-
Gérard HUSTACHE : Ingénieur ICPI (Institut de Chimie et Physique Industrielles de Lyon) - Ingénieur Procédé à Rhône-Poulenc
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Le tétraoxosulfate de dihydrogène, de formule H2SO4, plus couramment appelé acide sulfurique, est obtenu par synthèse à partir d’une matière première contenant du soufre, qui peut être soit le soufre lui-même, soit le gaz H2S sous-produit de certaines réactions chimiques, soit un sulfure métallique, soit des acides résiduaires.
Les principaux sulfures métalliques naturels industriels sont :
-
la pyrite FeS2, utilisée comme source de soufre, l’élément fer obtenu sous forme d’oxyde étant un sous-produit ;
-
la blende ZnS ;
-
la galène PbS ;
-
la chalcopyrite CuFeS2.
Ces trois derniers sont traités en vue d’obtenir le métal correspondant et dans lequel le soufre est un élément à éliminer : cette élimination se fait actuellement sous forme d’acide sulfurique.
Pour la fabrication de l’acide sulfurique, on distingue successivement :
– la production du dioxyde de soufre SO2, par combustion du soufre ou de H2S dans l’air ou par grillage oxydant des sulfures métalliques ou décomposition d’acides résiduaires dans un four ; le gaz obtenu a une teneur en SO2 variant de 7 à 12 % en volume et une teneur en oxygène variant de 4 à 13 % en volume ;
– dans le cas du grillage de minerai métallique et de décomposition d’acides résiduaires, une purification du gaz obtenu précédemment ;
– une réaction de catalyse hétérogène pour oxyder le dioxyde de soufre SO2 en trioxyde de soufre SO3 ;
– une absorption du trioxyde de soufre SO3 dans l’acide sulfurique concentré (98 % en masse), pour conduire de manière ménagée la réaction d’une molécule d’eau et d’une molécule de SO3 conduisant à l’acide sulfurique.
La réaction d’oxydation du dioxyde de soufre est l’étape clé du procédé et fait l’objet du présent article qui présente les éléments de calcul des lits catalytiques des réacteurs. Ceux-ci fonctionnant généralement à une pression proche de la pression atmosphérique, donc pour simplifier les calculs, les pressions sont exprimées, dans ce qui suit, en atmosphère (unité non légale : 1 atm = 1,013 x 105 Pa).
VERSIONS
- Version archivée 1 de sept. 1982 par Bruno VIDON
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(365 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Principe du calcul des réacteurs industriels
2.1 Définition de l’objectif
Le calcul d’un réacteur de conversion de dioxyde de soufre (ou anhydride sulfureux) a pour but de définir le trajet adiabatique optimal permettant de minimiser la quantité de catalyseur à mettre en œuvre pour un gaz industriel de composition initiale donnée et pour un taux de conversion visé également donné.
Tout gain sur la quantité de catalyseur se traduit par un gain sur le montant des investissements et (ou) sur la consommation d’énergie.
Inversement, une augmentation limitée de la quantité de catalyseur, sans augmenter le nombre de lits, peut permettre un gain appréciable sur le taux de conversion de SO2.
Pour fixer les ordres de grandeur, précisons que :
-
1 % du taux de conversion correspond à 3,3 kg de soufre par tonne d’acide ;
-
la dotation du catalyseur se situe entre 180 et 250 L par tonne d’H2SO4 produite par jour ; les capacités installées varient de 500 à 1 500 t/j et plus pour les unités modernes ;
-
le prix du catalyseur début 1996 est d’environ 13 F le litre et 3 fois plus cher pour un catalyseur au césium (à noter que ce prix dépend des frais de transport et de la quantité commandée) ;
-
que ce soit en simple ou en double absorption, les réacteurs modernes n’ont qu’exceptionnellement plus de quatre lits de catalyseur.
2.2 Équation de base
Les réacteurs industriels d’oxydation de SO2 sont considérés comme des réacteurs en écoulement piston en régime permanent avec réaction simple et dont le mode de calcul est décrit dans l’article J 4 010 Réacteurs chimiques : principes, du présent traité.
L’équation de base de définition de ces réacteurs est :
r dW = F dx
avec :
- r (mol SO2/s) :
- vitesse de réaction
- W (g) :
- masse de catalyseur
- F (mol SO2/s) :
- débit molaire d’alimentation du réacteur
- x :
- taux...
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(365 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Principe du calcul des réacteurs industriels
BIBLIOGRAPHIE
-
(1) - WEYCHERT (S.) et URBANEK (A.) - Kinetic equations for the catalytic oxidation of sulfur dioxide. - Inter. Chem. Engng (USA) 9, n 3, 1969, p. 396.
-
(2) - PACQUIEZ (P.) - Évolution de la fabrication de l’acide sulfurique pendant les trente dernières années. - Industrie Chim. (F) mars 1960, août 1961, mars 1962, janv. 1963, fév. 1963, juil. 1963, nov. 1963.
-
(3) - KELLEY (K.K.) - * - US Bureau of Mines Bulletin. p. 477, 1948.
-
(4) - HORN (F.) - Calcul des réacteurs adiabatiques à plusieurs compartiments. - Z. Elektrochem (D) 65, n 3, mai 1961, p. 295-303.
-
(5) - PAYNTER (J.D.), DRANOFF (J.S.) et BANKOFF (S.G.) - Suboptimal design of an SO2 oxidation catalytic reactor. - Ind. Eng. Chem. Process Des. Develop. vol. 10, n 2, 1971.
-
(6) - MATROS (YU. SH.) - Unsteady - state oxydation of sulphur...
ANNEXES
1 Constructeurs. Fournisseurs (liste non exhaustive)
1.1 Constructeurs d’unités de H2SO4 clés en main
Chemetics http:/:www.dow.com/hampshire/evans
Lurgi http://www.lurgi.com
HAUT DE PAGE1.2 Dimensionnement des réacteurs
BASF http://www.basf.fr
Haldor Topsoe http://www.haldortopsoe.com
HAUT DE PAGE
BASF http://www.basf.fr
Elf Atochem (Atofina) https://www.arkema.com/france/fr/
Hydro-Agri
Metal Europe
Rhône-Poulenc http://www.rhone-poulenc.com
Société chimique de la grande paroisse
Vieille-Montagne
HAUT DE PAGECet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(365 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive