Présentation
En anglaisRÉSUMÉ
Après un rappel des fondamentaux de l’intensification des procédés, en termes de principes, d’outils et de classification des technologies et méthodes, quelques-unes des pistes disponibles pour identifier et dépasser les limitations inhérentes à tout procédé sont passées en revue dans cet article. Sont également évoqués les réussites industrielles de l’intensification des procédés, les freins à son développement, ainsi que quelques-unes de ses perspectives pour répondre aux enjeux industriels du futur.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
After a brief review of the principles, tools and classification of the technologies and methods, this article explores some of the available avenues to identify and overcome the limitations inherent to any process. The industrial successes of process intensification, and the hurdles in its development are also described, together with some of its prospects in the face of future industrial challenges.
Auteur(s)
-
Christophe GOURDON : Professeur - Université Fédérale de Toulouse Midi-Pyrénées, INPT/ENSIACET, Laboratoire de Génie Chimique, UMR CNRS/INPT/UPS, TOULOUSE
INTRODUCTION
La liste des challenges auxquels sont désormais confrontés tous les secteurs industriels, notamment celui de la transformation de la matière, est longue. Sans prétendre à l’exhaustivité, citons-en quelques-uns : raréfaction des ressources (matières premières, eau …) ; attente sociétale en matière de respect de l’environnement (réduction de l’empreinte carbone et des émissions de gaz à effet de serre, augmentation de la sécurité, diminution des rejets) ; exigence de maintenir la compétitivité industrielle en maîtrisant les coûts dans un contexte de concurrence internationale ; montée en puissance de sources diversifiées de matières (biomasse) et d’énergie (énergies renouvelables) ; besoin de mise sur le marché de nouveaux produits, d’origines et de disponibilités diverses (produits biosourcés), recyclables ou biodégradables (analyse de cycle de vie, ACV) ; croissance de la démographie et donc de la demande …
C’est dans ce contexte complexe et exigeant qu’est apparue la notion d’intensification des procédés, une préoccupation qui rassemble aussi bien le monde industriel que le monde académique autour de la notion de développement de technologies ou de méthodes, dites de rupture, en vue de produire de manière plus propre, plus sûre, et plus sobre en consommation d’énergie et de matière.
L’objectif de cet article est de passer en revue les fondamentaux de l’intensification des procédés, en termes de principes, d’outils et de classification des technologies et méthodes, puis quelques-unes des pistes disponibles pour identifier et dépasser les limitations inhérentes à tout procédé. En particulier, il est primordial d’effectuer un diagnostic sur la nature de la limitation intrinsèque au procédé, à savoir si elle est plutôt chimique ou plutôt physique. Selon le résultat de ce diagnostic, les stratégies d’intensification peuvent différer en faisant appel à des outils multi-échelles, d’ordre soit technologiques soit méthodologiques, parmi lesquels on trouve :
-
la structuration spatiale de l’équipement (en particulier la miniaturisation) ;
-
l’activation des phénomènes ou mécanismes par apport d’énergie (mécanique, thermique …) ou d’énergie non conventionnelle (ultrasons, micro-ondes, UV …) ;
-
la recherche de synergie par la multifonctionnalité ou l’hybridation de technologies ;
-
la mise en œuvre de modes de fonctionnement cyclique ou instationnaire des procédés.
Compte tenu de la diversité des voies possibles pour intensifier un procédé, un certain nombre d’initiatives ont été récemment lancées, notamment en Europe, en vue d’assister le concepteur dans sa tâche de sélection de la voie optimale. Elles se sont traduites notamment par la création de plateformes de démonstration industrielle et par l’apparition de méthodes visant à guider l’ingénieur dans son développement de procédé intensifié. Sont également évoqués ici les réussites, en particulier industrielles, de l’intensification des procédés, mais aussi les freins à son développement et à son passage à l’industrialisation. Cet article se termine en dressant quelques-unes des perspectives en matière d’intensification des procédés pour répondre aux enjeux industriels du futur.
KEYWORDS
miniaturized technologies | multifunctional technologies | industrial applications
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Procédés chimie - bio - agro > Opérations unitaires. Génie de la réaction chimique > Chimie en flux continu > Intensification des procédés - Fondamentaux et exemples d’industrialisation > Exemples de réussite industrielle en intensification
Cet article fait partie de l’offre
Chimie verte
(160 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Exemples de réussite industrielle en intensification
Les exemples de réussite industrielle en matière d’intensification sont peu nombreux dans la littérature. À cela, une première raison simple : la confidentialité. Les avantages compétitifs sont tels qu’il n’est souvent pas autorisé de faire état de ces réussites. Dans un second temps, on voit qu’il existe aussi des barrières plus ou moins objectives à l’industrialisation, même si la preuve de concept à l’échelle pilote a été un succès. Les exemples qui suivent sont désormais des classiques et illustrent les quatre piliers de l’intensification.
5.1 Miniaturisation et transposition batch – continu
Le procédé industriel de Huntsman (MDA process) porte sur la réaction de l’aniline et du formaldéhyde pour former le méthylène dianiline, procédé traditionnellement opéré en réacteur batch. Ce procédé se déroule en quatre étapes :
-
la réaction de condensation ;
-
une isomérisation (pour le réarrangement en amine primaire) ;
-
une neutralisation (HCl – NaOH) ;
-
une séparation de phases.
La transposition batch-continu à l’échelle industrielle s’est faite en deux temps, d’abord en semi-continu en combinant opération continue pour les deux premières étapes et batch pour les deux dernières, puis finalement en enchaînant en continu les quatre étapes. Cette manière de procéder en deux temps a permis d’apprivoiser progressivement le passage en continu dans l’atelier de production et de laisser du temps à l’équipe technique pour se familiariser. Le procédé intensifié consiste en une succession de réacteurs piston tubulaires avec injections multiples et de réacteurs parfaitement agités continus.
Les avantages identifiés du passage batch-continu ont été les suivants :
-
facilité opérationnelle (lavage, moins de fuites, moins d’étapes …) ;
-
augmentation de la capacité ;
-
économie de catalyseur ;
-
réduction...
Cet article fait partie de l’offre
Chimie verte
(160 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Exemples de réussite industrielle en intensification
BIBLIOGRAPHIE
-
(1) - STANKIEWICZ (A.I.), MOULIJN (J.A.) - Re-Engineering the Chemical Processing Plant : Process Intensification, - CRC Press (2003).
-
(2) - CYBULSKI (A.), MOULIJN (J.A.), STANKIEWICZ (A.I.) - Novel Concepts in Catalysis and Chemical Reactors : Improving the Efficiency for the Future, - John Wiley & Sons (2011).
-
(3) - REAY (D.), RAMSHAW (C.), HARVEY (A.) - Process Intensification : Engineering for Efficiency, Sustainability and Flexibility, - 2nd Ed. by Trevor Laird, Butterworth-Heinemann/IChemE, Woburn, ISBN 978-0-08-098304-2 (2013).
-
(4) - BOODHOO (K.), HARVEY (A.) - Process Intensification of Green Chemistry : Engineering Solutions for Sustainable Chemical Processing, - ISBN : 978-0-470-97267-0 (2013).
-
(5) - CHARPENTIER (J.C.) - Génie des procédés, développement durable et innovation Enjeux et perspectives, - Techniques de l’Ingénieur, J500-1 (2013).
-
...
DANS NOS BASES DOCUMENTAIRES
European Process Intensification Roadmap (2007)
http://www.efce.info/efce_media/European_Roadmap_PI-p-531.pdf
EUROPIC
HORIZON 2020
https://ec.europa.eu/programmes/horizon2020/
SPIRE
HAUT DE PAGE
European Process Intensification Conferences (EPIC 5), Nice (France), September 27th – 1st October 2015
European Congress of Chemical Engineering (ECCE 10), Nice (France), September 27th – 1st October 2015
HAUT DE PAGE
FDA, Guidance for industry : PAT – A framework for innovative pharmaceutical development, manufacturing and quality assurance; September 2004
...
Cet article fait partie de l’offre
Chimie verte
(160 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive