Présentation

Article

1 - CONTEXTE

2 - SPÉCIFICITÉ DU BIORÉACTEUR À MEMBRANES – PRÉSENTATION GÉNÉRALE

3 - PARAMÈTRES DE DIMENSIONNEMENT ET DE CONTRÔLE

4 - EXEMPLE SIMPLIFIÉ DE DIMENSIONNEMENT D’UN BAM DANS LE CAS DU TRAITEMENT D’UN EFFLUENT URBAIN

5 - CONCLUSION

6 - EXEMPLES INDUSTRIELS

Article de référence | Réf : W4140 v1

Exemple simplifié de dimensionnement d’un BAM dans le cas du traitement d’un effluent urbain
Bioréacteurs à membranes et traitement des eaux usées

Auteur(s) : Alain GRASMICK, Corinne CABASSUD, Mathieu SPERANDIO, Christelle WISNIEWSKI

Date de publication : 10 août 2007

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Le bioréacteur à membranes est l’association d’un réacteur biologique et d’une séparation physique par des membranes poreuses. En traitement des eaux usées, ce procédé multifonctionnel offre des résultats intéressants, en terme de qualité et de fiabilité du traitement, mais sa mise en œuvre requiert la connaissance de quelques outils pour la maîtrise des processus physiques et biologiques spécifiques. Le bioréacteur à membranes est aujourd’hui une réalité industrielle : plus de 300 installations en Europe.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Alain GRASMICK : École polytechnique universitaire de Montpellier, université Montpellier II

  • Corinne CABASSUD : Institut national des Sciences appliquées de Toulouse (INSA)

  • Mathieu SPERANDIO : Institut national des sciences appliquées de Toulouse (INSA)

  • Christelle WISNIEWSKI : École polytechnique universitaire de Montpellier, université Montpellier II

INTRODUCTION

Le traitement des eaux résiduaires urbaines (ERU) ou industrielles (ERI) est régi, soit par une réglementation basée sur la plus ou moins grande fragilité du milieu récepteur en cas de rejet direct, soit par une qualité d’usage requise en cas de volonté de réutilisation des eaux traitées.

Pour les rejets en milieu naturel des effluents domestiques, il a ainsi été défini des zones dites « normales » pour lesquelles le traitement est principalement axé sur l’élimination des fractions particulaires et des pollutions carbonées et des zones dites « sensibles », où une élimination complémentaire des fractions azotées et phosphatées est nécessaire.

Pour les effluents domestiques, les procédés dits « conventionnels », qu’ils soient intensifs (boues activées ou lits bactériens, biofiltres par exemple), extensifs (lagunage, système d’infiltration notamment) ou combinés, peuvent répondre aux exigences de rejet en présentant chacun des performances plus ou moins fiables du fait de leur sensibilité à des variations brutales de flux à traiter (cas des systèmes à cultures libres), de l’état de floculation des populations épuratives (cas des boues activées) ou de défauts de maîtrise de la répartition de la biomasse et des écoulements au sein de garnissages poreux (systèmes à cultures fixées dans des lits à ruissellement, voire biofiltres).

Pour les effluents industriels, une réglementation précise également les conditions de rejet en milieu naturel, voire en réseau urbain, mais on observe un intérêt croissant pour des systèmes permettant une réutilisation partielle ou totale des eaux traitées.

Le présent article a pour objet de présenter les bioréacteurs à membranes utilisés en traitement des eaux usées, de mettre en avant l’originalité de ce procédé multifonctionnel, en terme de qualité et de fiabilité du traitement, et de donner quelques outils pour la maîtrise des processus physiques et biologiques spécifiques au procédé.

Le bioréacteur à membranes étant l’association d’un réacteur biologique et d’une séparation physique par des membranes poreuses, le document intègre la présentation générale du système, les caractéristiques propres à chaque étape unitaire et à leur couplage, des exemples de dimensionnement et d’applications, ainsi que des perspectives de développement.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-w4140

CET ARTICLE SE TROUVE ÉGALEMENT DANS :

Accueil Ressources documentaires Environnement - Sécurité Technologies de l'eau Procédés de traitement des eaux potables, industrielles et urbaines Bioréacteurs à membranes et traitement des eaux usées Exemple simplifié de dimensionnement d’un BAM dans le cas du traitement d’un effluent urbain

Accueil Ressources documentaires Procédés chimie - bio - agro Chimie verte Gestion durable des déchets et des polluants Bioréacteurs à membranes et traitement des eaux usées Exemple simplifié de dimensionnement d’un BAM dans le cas du traitement d’un effluent urbain

Accueil Ressources documentaires Procédés chimie - bio - agro Bioprocédés et bioproductions Concepts, équipements et biosécurité Bioréacteurs à membranes et traitement des eaux usées Exemple simplifié de dimensionnement d’un BAM dans le cas du traitement d’un effluent urbain


Cet article fait partie de l’offre

Chimie verte

(163 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

4. Exemple simplifié de dimensionnement d’un BAM dans le cas du traitement d’un effluent urbain

Exemple

Nous allons considérer un exemple relatif au traitement d’un effluent présentant un débit moyen Q i de 1 000 m3 · j–1.

Dans cet exemple, le dimensionnement est rapporté aux flux moyens journaliers.

Cet effluent contient une concentration moyenne en matière organique de 800 mg DCO/L. Il est recherché un rejet n’excédant pas 80 mg/L en DCO (soit un rendement épuratoire sur la matière organique de 90 %) et 15 mg/L en MES.

On considèrera que le rapport MVS/MES dans l’eau brute est proche de 80 %.

L’épuration ne portant que sur l’élimination de la fraction organique et de la fraction particulaire, un seul réacteur biologique aérobie est nécessaire, associé à une étape de séparation membranaire.

Quatre conditions biologiques sont envisagées et seront alors comparées : le volume de réacteur, la production de boues et les besoins quotidiens en oxygène par unité de volume de réacteur :

  • procédé 1 : un BAC conventionnel (boues activées associées à une clarification aval par décantation gravitaire) présentant un âge de boues de 10 jours et une concentration en MES en régime stabilisé de 5 g/L ;

  • procédé 2 : un bioréacteur à membrane fonctionnant à fort âge des boues. En régime permanent, le temps de séjour des boues est de 40 j et la concentration en biomasse de 20 gMES/L ;

  • procédé 3 : un bioréacteur à membrane fonctionnant à faible âge des boues. En régime permanent, le temps de séjour des boues est de 10 j et la concentration en biomasse de 20 gMES/L ;

  • procédé 4 : un bioréacteur à membrane fonctionnant avec un âge des boues de 15 jours et une concentration en biomasse moyenne de 10 gMES/L.

Pour les systèmes BAM 2, 3 et 4, la partie séparation membranaire sera analysée en considérant les données suivantes :

  • l’installation membranaire va fonctionner avec des modules immergés présentant chacun une surface filtrante de 150 m2. Les membranes choisies présentent une perméabilité à l’eau propre de 150 L · h · m–2 · bar–1...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Chimie verte

(163 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Exemple simplifié de dimensionnement d’un BAM dans le cas du traitement d’un effluent urbain
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - CHO, FANE -   Fouling transients in nominally sub-critical flux operation of a membrane bioreactor.  -  J. Membr. Sci. 209, 391–403 (1999).

  • (2) - CHOO (K.H.), LEE (CH.) -   Membrane fouling mechanisms in the membrane-coupled anaerobic bioreactor.  -  Water Research, 30, 1771-1780 (1996)

  • (3) - CORNEL (P.), KRAUSE (S.) -   Membrane bioreactors in industrial wastewater treatment – European experiences, examples and trends.  -  Water Science and Technology, Volume 53, Issue 3, 37-44 (2006).

  • (4) - FIELD (R.W.), WU (D.), HOWELL (J.A.), GUPTA (B.B.) -   Critical flux concept for microfiltration fouling.  -  J Membr. Sci., 100, 259-272 (1995).

  • (5) - HERBERT -   The chemical composition of micro-organisms in environmental processes.  -  REC. Progress in Microbiol., 381-416 (1958).

  • (6) - HERMIA (J.) -   « Constant pressure blocking filtration laws. Applications...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Chimie verte

(163 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS