Présentation
EnglishRÉSUMÉ
Le filtrage est une opération fondamentale dans le traitement de l’information. Celle-ci consiste à transformer une information contenue en une information « filtrée », jugée plus pertinente et plus utile, à l’aide d’un système matériel ou logiciel appelé filtre. L’extraction, l’estimation et la prédiction sont également considérées comme des opérations de filtrage.
Cet article est restreint aux filtres linéaires où l’information extraite est une combinaison linéaire des observations disponibles. Une telle approche permet de bénéficier de modèles simples et efficaces. Après avoir énoncé les concepts fondamentaux du filtrage linéaire, cette partie se concentre sur les filtres numériques FIR ou IIR puis s’oriente vers le filtrage optimal et le filtre à 2D.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Abdeldjalil OUAHABI : Professeur des Universités - Polytech Tours. Université de Tours (France) - Coordonnateur Traitement du Signal et Machine Learning. Université de Bouira (Algérie)
INTRODUCTION
Ce travail est né du besoin de mettre à disposition des ingénieurs et techniciens toute une panoplie de méthodes actuelles de filtrage. Il vise également à démystifier les aspects considérés comme abscons en fournissant des clés pour une bonne pratique des opérations de filtrage.
En 1988, le défunt Jacques Max, adjoint scientifique au Commissariat à l’énergie Atomique de Grenoble, a proposé aux « Techniques de l’Ingénieur » une contribution très intéressante sur la pratique du filtrage numérique : notre article se situe dans une volonté de compléter et étendre la pratique du filtrage aux récents développements du filtrage linéaire numérique à une et à deux dimensions.
Mais qu’est-ce que le filtrage ?
Le filtrage est une opération qui consiste à transformer l’information (contenue dans un signal) en entrée d’un système matériel ou logiciel en une information de sortie différente de l’information d’origine, mais plus utile pour l’expérimentateur.
Dans le cas d’un signal à une ou à deux dimensions, cette transformation peut se matérialiser, par exemple, soit par une sélection ou une élimination de certaines fréquences, soit par une réduction voire même une suppression d’informations indésirables. Dans cette optique, il est possible de citer l’exemple de la lumière blanche qui se transforme en lumière bleue, ou bien celui d’un e-mail ou un site web bloqué ou « filtré » par un dispositif électronique ou par un code informatique agissant selon certains critères. L’extraction ou l’estimation d’informations pertinentes et de caractéristiques utiles peut être considérée également comme un filtrage.
Après un rappel des concepts fondamentaux de la numérisation d’un signal, et d’utilisation d’outils d’analyse spécifiques aux systèmes numériques, les méthodes de synthèse de filtres linéaires numériques du type FIR (filtre à réponse impulsionnelle finie) et du type IIR (filtre à réponse impulsionnelle infinie) seront présentées sous un angle simplifié et implémentées sous MATLAB. Les avantages et limitations de ces deux types de filtres seront également analysés. Deux applications qui permettent d’illustrer l’utilisation de ces filtres dans le monde réel sont proposées : l’une sur le réchauffement climatique et l’autre dans le domaine de l’audio.
Par la suite, notre attention se focalisera sur le filtrage optimal, notamment récursif, dont l’importance pratique est vitale, par exemple dans le domaine du Radar et du suivi de cible en présence de fortes perturbations, ou encore dans le domaine biomédical.
L’extension du filtrage linéaire aux images numériques est illustrée en lissage, accentuation, débruitage et détection de contours.
Tout au long de cet article, il est mis à la disposition du lecteur de nombreux exemples et exercices d’applications pour illustrer les résultats obtenus : les exemples ont toujours un but pédagogique ou une approche du concret en vue de réaliser un filtre « sur mesure ». Des codes MATLAB sont proposés pour permettre à l’expérimentateur de mettre en œuvre concrètement la pratique du filtrage.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mesures et tests électroniques
(78 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Filtres FIR (Finite Impulse Response ou réponse impulsionnelle finie)
2.1 Principe
Un filtre FIR est défini par l’équation (31) reliant l’entrée x(k) à la sortie y(k) :
Le filtre ainsi défini comporte un nombre N fini de coefficients an .
En comparant la définition (31) à la relation (26) liant l’entrée et la sortie via la réponse impulsionnelle h(k), nous obtenons immédiatement :
La réponse impulsionnelle définie en (32) comporte un nombre de coefficients égal à N, et par conséquent elle est finie (sous-entendu de durée finie) d’où la terminologie filtre FIR ou filtre à réponse impulsionnelle...
Cet article fait partie de l’offre
Mesures et tests électroniques
(78 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Filtres FIR (Finite Impulse Response ou réponse impulsionnelle finie)
BIBLIOGRAPHIE
-
(1) - TAN (L.), JIANG (J.) - Digital Signal Processing: Fundamentals and Applications. - Academic Press (2018).
-
(2) - LENSSEN (N.) et al - Improvements in the GISTEMP uncertainty model – J. - Geophys. Res. Atmos, Volume 124, n° 12, pp. 6307-6326 (2019).
-
(3) - OUAHABI (A.), DEPOLLIER (C.), SIMON (L.), KOUAME (D.) - Spectrum estimation from randomly sampled velocity data [LDV]. – - IEEE Transactions on Instrumentation and Measurement, Volume 47, n° 4, pp. 1005-1012 (1998).
-
(4) - OUAHABI (A.), LACOUME (J.-L.) - New results in spectral estimation of decimated processes. - IEE Electronics Letters, Volume 27, n° 16, pp. 1430-1432 (1991).
-
(5) - OUAHABI (A.) - Analyse spectrale paramétrique de signaux lacunaires. - Traitement du Signal, Volume 9, n° 2, pp. 181-191 (1992).
-
...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Laboratoires – Bureaux d'études – Écoles – Centres de recherche (liste non exhaustive)
MATLAB 2019 – R2019b Compagnie Mathworks France
https://fr.mathworks.com/products/new_products/release2019b.html
HAUT DE PAGECet article fait partie de l’offre
Mesures et tests électroniques
(78 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive