Présentation
EnglishRÉSUMÉ
Même si les écrans plasma ont envahi le marché grand public, notamment grâce à la forte avancée en la matière des pays asiatiques, et ceci à des coûts très bas, la qualité d’image n’est pas toujours au rendez-vous, encore à l’heure actuelle. Ainsi, pour que cette technologie puisse rivaliser aisément avec le tube cathodique, il lui faudra innover. L’article présente l’aspect du prétraitement vidéo, puis les transformations et les transcodages nécessaires à l’affichage d’une image optimale au niveau du rendu des niveaux vidéo, du mouvement et des paramètres tels que le contraste et la consommation de puissance. L’écran plasma du futur permettra-t-il d’offrir une nouvelle dimension ?
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Sébastien WEITBRUCH : Ingénieur de l’École Nationale Supérieure des Télécommunications de Bretagne - Titulaire d’un DEA en traitement du signal de l’Université de Rennes - Responsable Recherche en traitement du signal des écrans plasma - Thomson Multimédia division « Corporate Research »
INTRODUCTION
Les écrans à plasma couleur ont fait leur première apparition sur le marché international vers la fin du XXe siècle avec des tailles de 42 ’ ’ (1,07 m) de diagonale, une profondeur inférieure à 10 cm et ce pour une masse de l’ordre de 30 kg. Bien que ces écrans, de par leur prix, furent réservés au début à des applications professionnelles (écrans d’affichage, publicité, salle de meeting…), la part de marché réservée aux applications grand public ou Home cinéma augmente régulièrement.
En effet, si les premiers écrans apparus sur le marché furent japonais (NEC, Fujitsu, Panasonic, Pionneer), très vite d’autres pays asiatiques se sont lancés dans l’aventure et aujourd’hui, les Coréens en particuliers, ont lancé une véritable offensive sur les prix. Ces derniers ont même dépassé leurs modèles japonais en taille comme Samsung qui présenta, début 2005, un écran record de 102 ’ ’ (2,60 m) de diagonale pour une résolution de 1 920 × 1 080 pixels (Full-HD).
Néanmoins, si la chute des prix associée à des démonstrations technologiques impressionnantes parlent en faveur du succès de cette technologie, il ne faut pas oublier un facteur essentiel : la qualité d’image. En effet, pour beaucoup de paramètres encore, certains écrans plasma sont toujours inférieurs au tube cathodique.
Cela est prinicipalement dû au fait que cette nouvelle technologie s’éloigne nettement du tube cathodique (CRT) quand au rendu de l’image vidéo. Dès lors, le succès de cette technologie ne pourra s’établir qu’en innovant aussi dans ce domaine afin de proposer des images de qualité égale ou supérieure au CRT. C’est pourquoi nous voulons mettre l’accent, dans ce dossier, sur les particularités de la technologie plasma et sur les traitements du signal associés.
Ainsi, dans une première partie nous étudierons l’aspect du prétraitement vidéo nécessaire au vu des sources actuellement disponibles, puis nous entrerons dans le vif du sujet avec les transformations et les transcodages nécessaires à l’affichage d’une image optimale au niveau du rendu des niveaux vidéo, du mouvement et des paramètres tels que les contrastes et la consommation d’énergie. Enfin, nous analyserons les possibles applications futures de cette technologie, ainsi que la structure complète d’un écran plasma actuel.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mesures et tests électroniques
(78 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
8. Effet de traînage coloré des phosphores
8.1 Temps de réponse des phosphores
Le principe des écrans plasma couleur est basé sur l’utilisation de trois composés chimiques appelés phosphores ou luminophores qui vont être excités par le rayonnement ultraviolet de la décharge obtenue dans le gaz. Ensuite, chaque luminophore, de par sa constitution chimique, va émettre une certaine longueur d’onde. Les trois longueurs d’onde choisies pour le rendu d’images colorées étant le bleu, le rouge et le vert.
Actuellement, l’un des principaux problèmes des écrans plasma est leur durée de vie qui s’exprime en terme de marquage lumineux. En effet, si une certaine image est projetée de manière répétée sur l’écran (par exemple : menu de DVD), il va y avoir une altération plus rapide de certains phosphores qui vont perdre de leur rendement lumineux plus rapidement que les autres. Ensuite, l’écran ne va plus être homogène et l’image « marquée » va être visible constamment sur les différentes scènes observées. De nombreux travaux concernant l’amélioration de la durée de vie de ces luminophores sont en cours actuellement, comme la recherche d’une meilleure composition chimique plus stable pour chaque phosphore.
Malheureusement, l’amélioration de la stabilité de ces luminophores s’accompagne d’un ralentissement de leur temps de réaction. Ce problème de temps de réaction est aussi connu pour d’autres technologies, tels les écrans LCD, ce qui les handicape fortement dans l’affichage de scènes animées. En effet, les contours fortement contrastés d’objets en mouvement vont générer une traînée qui nuit à la netteté générale de l’écran pour des applications vidéos tel le Home cinéma.
Dans le cas spécifique des écrans plasma, le problème est encore plus critique car les trois luminophores ne vont pas avoir le même temps de réponse comme nous le montre la figure 28, pour une excitation UV définie.
En règle générale, le luminophore bleu est toujours le plus rapide avec un temps de réponse quasiment négligeable alors que le luminophore vert est toujours le plus lent avec des temps de réponse pouvant aller de 7 à 12 ms. Le luminophore rouge se situe, lui, entre les deux.
...Cet article fait partie de l’offre
Mesures et tests électroniques
(78 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Effet de traînage coloré des phosphores
BIBLIOGRAPHIE
-
(1) - OHM (J.-R.), RUMMLER (K.) - Variable-Raster Multiresolution Video Processing with Motion Compensation Techniques. - Proceedings of the 1997 International Conference on Image Processing (ICIP’97), vol. 3, 1997.
-
(2) - OPPENHEIM (A.V.), SCHAFER (R.W.) - Digital signal processing. - Prentice-Hall, Englewood Cliffs, N. J., 1975.
-
(3) - BESSON (R.) - Cours fondamental de télévision. - 539 p., Éditions Radio 189 rue Saint Jacques 75005 Paris, 1988.
-
(4) - FLOYD (R.W.), STEINBERG (L.) - Adaptive algorithm for spatial grey scale. - SID International Symposium on Digital Technology, pp. 36-37, 1975.
-
(5) - YAMAGUCHI (T.), MASUDA (T.), KOHGAMI (A.), MIKOSHIBA (S.) - Degradation of moving-image quality in PDPs : Dynamic false contours. - Journal of the SID, 4/4, pp. 263-270, 1996.
-
(6) - CUTTING (J.E.) - Perception...
Cet article fait partie de l’offre
Mesures et tests électroniques
(78 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive