Présentation
EnglishRÉSUMÉ
Dans les centrales nucléaires, le combustible est stocké dans des tubes hermétiques appelés crayons combustibles. Les éléments radioactifs confinés libèrent au fur et à mesure de leur activité un mélange d’hélium et de xénon. À ce jour, il n’existe aucun contrôle non destructif pour suivre l’évolution de la production de ces gaz de fission. Cet article présente un dispositif acoustique innovant qui permet de mesurer leur pression et leur composition, de détecter le crayon défectueux et d’aider à la prise de décision du rechargement d’un assemblage. Cet outil peut également aider à une meilleure évaluation des marges vis-à-vis du critère de sûreté correspondant.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Eric Rosenkrantz
-
Jean-Yves Ferrandis
-
Gérard Lévêque
-
Daniel Baron
INTRODUCTION
La consommation d'électricité dans le monde ne cesse de croître. En France, environ 80 % de l'électricité est produite à partir de l'énergie nucléaire. Dans les centrales, le combustible nucléaire est conditionné dans des tubes hermétiques, les crayons combustibles. En confinant les éléments radioactifs, les crayons constituent la première barrière biologique vis-à-vis de l'environnement. Au fur et à mesure de son activité de désintégration, après plusieurs cycles en centrale, l'uranium produit dans le tube qui le contient des gaz, essentiellement de l'hélium et du xénon. Un meilleur suivi du relâchement (mesure de la pression et de la composition) des gaz de fission pourrait permettre une optimisation de la durée d'utilisation des crayons en centrale. À ce jour, les seuls contrôles effectués sont destructifs : les crayons sont extraits des centrales, puis percés et les gaz analysés. Une mesure non destructive in situ des propriétés de ces gaz constituerait une avancée considérable dans le contrôle de la gestion des centrales.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Énergies > Génie nucléaire > Physique nucléaire > Caractérisation d'un gaz confiné à l'aide d'un capteur acoustique - Application aux crayons combustibles nucléaires > Prise en compte de l'équation d'état des gaz réels
Cet article fait partie de l’offre
Mesures physiques
(119 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
6. Prise en compte de l'équation d'état des gaz réels
La figure 17 montre l'évolution de la vitesse du son en fonction de la pression pour un mélange d'He/Xe à 40 %. À 150 bar, la vitesse a augmenté de 8 % par rapport à celle des gaz parfaits. L'utilisation de la relation :
pour déterminer la masse molaire du mélange, à cette pression, conduirait donc à commettre une erreur de 16 % sur la masse molaire. Il est donc impératif de compenser les variations de vitesse des gaz réels en fonction de la pression en introduisant les expressions exactes des vitesses c = f (P, x, T).
Pour effectuer cette correction, nous avons choisi d'utiliser l'équation d'état de Redlich-Kwong [BE 8 030] :
Cet article fait partie de l’offre
Mesures physiques
(119 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Prise en compte de l'équation d'état des gaz réels
BIBLIOGRAPHIE
-
(1) - HANNUM (W.) et al - Réacteur à neutrons rapides contre déchets nucléaires. - Pour la science, p. 32-39, janv. 2006.
-
(2) - BELAUD (S.) - Énergie nucléaire : le nouvel élan. - Le journal du CNRS, (195), p. 19-27, avr. 2006.
-
(3) - OLANDER (D.R.) - Fundamental aspects of nuclear fuel elements, chapter 15, TID-26711-P1. - US Dept of Energy (1976).
-
(4) - THEVENIN (R.M.-P.), BARON (D.), PETITPREZ (B.), PLANCQ (D.) - * - CYRANO3 : the industrial PLEIADES fuel performance code for EDF PWR studies.
-
(5) - BARON (D.) et al - CYRANO 3 the EDF fuel performance code especially designed for enginneering applications. - In Water reactor fuel performance meeting proceeding, Seoul (2008).
-
(6) - JOHNSON (K.O.), COFFMAN (F.M.) - Leak detector probe for fuel rods. - Patent number :...
DANS NOS BASES DOCUMENTAIRES
Cet article fait partie de l’offre
Mesures physiques
(119 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive