Article de référence | Réf : R290 v2

Contrôle en cours de fabrication
Maîtrise statistique des processus - Utilisation des cartes de contrôle

Auteur(s) : Françoise BOULANGER, Georges CHÉROUTE, Valérie JOLIVET

Relu et validé le 15 mars 2022

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Élément dynamique du système qualité, la maîtrise statistique du processus (MSP) est l’ensemble des méthodes et des actions préventives qui vise à amener un processus au niveau requis de qualité. Pour ce faire, les performances du processus de production sont évaluées, adaptées et surveillées statistiquement de façon à éviter les dérives et à maintenir la conformité du produit. Les paramètres de position et de dispersion de la population étudiée sont reportés sous forme de tracés sur les cartes de contrôle. Leur facilité de lecture en fait un outil visuel efficace pour suivre l’évolution du processus.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

INTRODUCTION

Nota :

Ce texte est la nouvelle édition du dossier rédigé par Gérard BRUNSCHWIG et Alain PALSKY.

Un processus transforme des entrants, par exemple des matières premières, en sortants. Les sortants peuvent être des produits physiques ou des services. Le produit obtenu, physique ou non, présente des caractéristiques dont certaines sont importantes pour le client ou l’utilisateur. Cette transformation peut être différente selon le réglage de différents paramètres réglables du processus ou selon le niveau d’autres facteurs qui peuvent être subis (par exemple, la température extérieure).

Maîtriser le processus, c’est être capable de prévoir les caractéristiques du produit étant donné le niveau de l’ensemble des paramètres influents du processus. C’est aussi être capable d’ajuster les paramètres réglables du processus en fonction du niveau des facteurs influents subis pour que les caractéristiques du produit soient conformes aux attentes.

Parmi les facteurs agissant sur les caractéristiques du produit, que ces facteurs soient subis ou non, certains ont une influence très importante, d’autres moyenne, d’autres encore très faible. Comme lorsque l’on définit un produit, on admet une variabilité des caractéristiques du produit (intervalle de tolérance), on admet que certains facteurs peu influents sur les caractéristiques du produit ne soient pas identifiés et engendrent, du fait de leur fluctuation inconnue, une variabilité des caractéristiques des produits, dès lors que les caractéristiques du produit restent largement acceptables.

Pour garantir un produit conforme à des spécifications, deux solutions s’offrent au pilote du processus :

  • contrôler tous les produits si cela est possible (dans le cas d’un contrôle destructif, cela n’est pas possible) ;

  • avoir identifié l’ensemble des facteurs influents, avoir effectué les réglages pour que les caractéristiques des produits soient conformes aux attentes et avoir vérifié par le contrôle d’échantillons qu’aucun autre facteur inconnu jusque-là n’est apparu, c’est-à-dire que le résultat est conforme aux relations causes-effets déjà identifiées.

Du fait de ces définitions, deux cas d’application de la maîtrise statistique des processus (MSP) sont à distinguer :

  • les facteurs influents ne sont pas totalement identifiés : il faut observer les fluctuations du processus, déterminer lorsque des paramètres influents non identifiés apparaissent, identifier ces facteurs et trouver des parades à leur influence. Des investigations techniques sont nécessaires ;

  • les facteurs influents sont déjà totalement identifiés : il ne s’agit que de vérifier qu’il n’en apparaît pas de nouveau. Une technique de suivi avec de simples règles de réactivité en fonction d’observations, sans nécessairement l’utilisation de cartes de contrôle, peut s’avérer suffisante.

La mise en œuvre dans le premier cas (facteurs influents non totalement identifiés) ne se fera que si le rapport « bénéfices qualitatifs et quantitatifs attendus/investissement » est jugé satisfaisant. En revanche, dans le deuxième cas (facteurs influents totalement identifiés), il n’y a aucune raison de ne pas chercher à maîtriser le processus. Mais le plan de surveillance du processus doit clairement faire ressortir l’ensemble des paramètres du processus à verrouiller (et leur réglage éventuel en fonction des facteurs subis) pour garantir les produits conformes.

Ainsi, on appelle maîtrise statistique de processus (MSP), ou en anglais « statistical process control » (SPC), l’ensemble des méthodes et des actions permettant d’évaluer de façon statistique les performances d’un processus de production (au sens large), et de décider de le régler, si nécessaire, pour maintenir les caractéristiques des produits stables et conformes aux spécifications retenues. C’est un des éléments dynamiques du système qualité qui concourt à l’amélioration permanente des productions (cf. fascicule de documentation Afnor X06-030).

On entend par processus de production l’ensemble des éléments qui concourent à la production : matières premières, moyen, main-d’œuvre, milieu, méthode, que l’on représente souvent schématiquement par le diagramme des 5M (figure 1).

La MSP ne se limite pas à l’établissement de cartes de contrôle et à leur exploitation pour régler des « moyens » et maîtriser des processus : c’est une suite d’analyses qui comprend :

  • une réflexion sur le processus ;

  • une étude de l’aptitude des processus de fabrication et de contrôle, ce qui permet de choisir ou de modifier les appareillages à utiliser et de fixer correctement les spécifications ;

  • le choix et la mise en œuvre de méthodes statistiques de contrôle en cours de fabrication ;

  • le contrôle final, si nécessaire, des produits ;

  • l’exploitation des informations accumulées afin d’améliorer la connaissance du processus (identification et suppression progressive des causes de dérives).

La MSP est une méthode préventive de gestion de la qualité qui vise à amener tout processus au niveau requis de régularité de qualité et à l’y maintenir grâce à un système de surveillance statistique permettant de réagir rapidement et efficacement à des dérives, évitant ainsi la production de produits non conformes.

La MSP concerne essentiellement des fabrications de moyennes et grandes séries.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-r290


Cet article fait partie de l’offre

Instrumentation et méthodes de mesure

(50 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

4. Contrôle en cours de fabrication

L’idée des cartes de contrôle est due à l’américain W. Shewhart (1931) ; leur utilisation, d’abord lente, a connu un premier développement en 1939-1945 aux États-Unis, et en Europe dix ans plus tard. Quelques grandes industries françaises les ont employées plus systématiquement vers 1965 (par exemple, l’industrie textile), et des centres de formation, particulièrement en France le Centre d’enseignement et de recherche de la statistique appliquée (CERESTA), ont fortement contribué dès cette époque à leur utilisation. Mais le moteur de leur développement actuel est les normes qualité NF EN ISO 9000 ; leur vulgarisation a été facilitée par les normes statistiques Afnor/ISO et l’enseignement pratique des statistiques dans les écoles d’ingénieurs.

Les méthodes statistiques de contrôle utilisées pour maîtriser un processus font appel à la théorie de l’échantillonnage et permettent de définir quand un processus a probablement dérivé (en position ou en dispersion) en s’aidant de tracés, appelés cartes de contrôle, où l’on reporte les paramètres de position et de dispersion de la population estimés à partir d’un échantillon par rapport à des limites de contrôle. Le franchissement involontaire des limites de contrôle indique que l’on a perdu le contrôle du processus. L’usage a consacré ces tracés sous l’expression de « cartes de contrôle » (de l’anglais control charts), bien qu’il aurait été plus judicieux de les appeler en français « cartes de maîtrise » ou « cartes de conduite ». Le caractère visuel des cartes de contrôle, qui permet une identification rapide et aisée de l’évolution du processus, est un atout pour leur utilisation.

Pour un caractère mesuré (par exemple, une cote de pièce), on construira une carte de contrôle de la cible centrale (souvent la moyenne de N pièces, mais parfois une valeur nominale ou une valeur souhaitée non centrée) et un paramètre de dispersion tel que l’écart-type s des échantillons, ou l’étendue w (différence entre les valeurs extrêmes de l’échantillon).

Pour un caractère qualitatif (pièces conformes ou non conformes), on estimera à l’aide de cartes de contrôle la proportion de pièces non conformes...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Instrumentation et méthodes de mesure

(50 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Contrôle en cours de fabrication
Sommaire
Sommaire
INFORMATIONS DIVERSES
Nota :Nota :

Ce texte est la nouvelle édition du dossier rédigé par Gérard BRUNSCHWIG et Alain PALSKY.

BIBLIOGRAPHIE

  • (1) - CAVÉ (R.) -   Le contrôle statistique des fabrications  -  . Eyrolles (1966).

  • (2) - JURAN (J.) -   Planifier la qualité  -  . Coll. Afnor Gestion (1989).

  • (3) - LAMOUILLE (J.L.), MURRY (B.), POTIÉ (C.) -   La maîtrise statistique des procédés (SPC). Démarche et outils  -  . 126 p. Coll. Afnor Gestion (1989).

  • (4) - SOUVAY (P.) -   La statistique, outil de la qualité  -  . 289 p. Coll. Afnor Gestion (1986).

  • (5) -   Aide-mémoire pratique des techniques statistiques pour ingénieurs et techniciens supérieurs  -  . CERESTA (1986).

  • (6) - RYAN (T.) -   Statistical methods for quality improvement  -  . Willey (1989).

  • ...

1 Normalisation

NF ISO 2859-1 (4-00), Règles d’échantillonnage pour les contrôles par attributs – Partie 1 : procédures d’échantillonnage pour les contrôles lot par lot, indexés d’après le niveau de qualité acceptable (NQA).

NF ISO 2859-1 (10-05), Règles d’échantillonnage pour les contrôles par attributs – Partie 3 : procédures d’échantillonnage successif partiel.

NF ISO 2859-4 (5-03), Règles d’échantillonnage pour les contrôles par attributs – Partie 4 : procédures pour l’évaluation des niveaux déclarés de qualité.

NF ISO 2859-5 (10-05), Règles d’échantillonnage pour les contrôles par attributs – Partie 5 : systèmes de plans d’échantillonnage progressif pour le contrôle lot par lot, indexés d’après la limite d’acceptation de qualité (LAQ).

NF ISO 5725-1 (12-94), Application de la statistique – Exactitude (justesse et fidélité) des résultats et méthodes de mesure – Partie 1 : principes généraux et définitions.

NF ISO 5725-2 (12-94), Application de la statistique – Exactitude (justesse et fidélité) des résultats et méthodes de mesure – Partie 2 : méthode de base pour la détermination de la répétabilité et de la reproductibilité d’une...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Instrumentation et méthodes de mesure

(50 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS