Présentation
EnglishAuteur(s)
-
Didier BLAVETTE : Professeur des Universités Groupe de Physique des Matériaux – UMR CNRS 6634 Normandie Université, Université et INSA de Rouen UFR Sciences et Techniques
-
François VURPILLOT : Maître de conférences Groupe de Physique des Matériaux – UMR CNRS 6634 Normandie Université, Université et INSA de Rouen UFR Sciences et Techniques
-
Bernard DECONIHOUT : Professeur des Universités Groupe de Physique des Matériaux – UMR CNRS 6634 Normandie Université, Université et INSA de Rouen UFR Sciences et Techniques
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Les progrès constants réalisés dans le domaine des nanosciences et de leurs applications, les nanotechnologies, n'ont pu se faire que grâce au développement de techniques d'analyse et d'imagerie de plus en plus performantes. Pendant longtemps, les nanostructures telles que les transistors, les vannes de spin, les LED étaient structurées en deux dimensions en densité croissante sur les substrats de silicium (wafers). Aujourd'hui, l'industrie de la nanoélectronique se heurte à une limite importante empêchant l'intégration en surface des nano-objets. Un pas vient d'être franchi cette année 2013 avec le lancement par INTEL de la technologie 3D sans laquelle la densité d'intégration ne peut plus croître. Alors que les techniques d'analyses et d'imagerie en deux dimensions sont légions (spectrométrie de masse d'ions secondaires, microscopie électronique haute résolution, techniques de champs proche…), aucune, jusqu'à l'avènement de la sonde atomique tomographique assistée par laser ne permettait l'étude des interfaces et de la chimie de ces nouveaux nano-objets à l'échelle atomique et en trois dimensions.
La sonde atomique est un instrument assez ancien qui est née trois fois. Pendant longtemps, elle fut limitée à l'étude des métaux. Elle a récemment subi une révolution permettant son utilisation sur des matériaux isolants et conducteurs. Cela a ouvert la voie à l'imagerie analytique 3D avec une résolution inférieure au nanomètre.
Dans cet article sont décrits les principes fondamentaux sur lesquels reposent la technique et les technologies développées au cours de ces dernières années pour aboutir à la version moderne de l'instrument suite à de nombreux développements ingénieux développés dans le cadre des nanosciences. Aujourd'hui, c'est dans le domaine des nanotechnologies que la sonde atomique tomographique SAT continue d'être développée et de trouver des applications variées sur des problématiques modernes.
VERSIONS
- Version archivée 1 de juil. 1989 par Didier BLAVETTE, Alain MENAND
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Innovation > Nanosciences et nanotechnologies > Nanosciences : concepts, simulation et caractérisation > Sonde atomique tomographique SAT > Imagerie tridimensionnelle en SAT
Accueil > Ressources documentaires > Sciences fondamentales > Nanosciences et nanotechnologies > Nanosciences : concepts, simulation et caractérisation > Sonde atomique tomographique SAT > Imagerie tridimensionnelle en SAT
Accueil > Ressources documentaires > Mesures - Analyses > Mesures mécaniques et dimensionnelles > Nanométrologie > Sonde atomique tomographique SAT > Imagerie tridimensionnelle en SAT
Cet article fait partie de l’offre
Techniques d'analyse
(289 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
7. Imagerie tridimensionnelle en SAT
Le résultat final d'une analyse en sonde atomique est une carte 3D de la position des atomes de chaque espèce (A,B, C…) au sein du volume sondé.
Plusieurs dizaines de millions d'atomes peuvent être collectées pour chaque analyse. L'analyse des informations contenues dans les jeux de donnée n'est pas triviale.
Le jeu de donnée peut être représenté selon plusieurs méthodes afin de déduire des propriétés structurales ou chimiques (précipitation, ségrégation, interdiffusion…) pouvant influencer les propriétés physiques du matériau.
La manière la plus simple est de représenter les atomes par un jeu de points colorés définis en 3D. Chaque point est alors un atome de coordonnées (x, y, z ). La nature chimique codée en couleur est déduite du spectre de masse (figure 8 a ). Le logiciel spécifique IVAS (commercialisé par CAMECA) est utilisé pour tourner le jeu de donnée et mettre en valeur la morphologie des phases en présence.
Une autre manière est de découper le volume en un maillage fin N x N y N z . Dans chaque petit volume Δx Δy Δz, la densité atomique ρi de l'espèce i (atomes/m3) est mesurée (figure 8 b ). La densité au sein des pixels 3D (ou voxel) peut être représentée à l'aide d'une couleur et d'une transparence afin de voir littéralement à travers le volume reconstruit.
Néanmoins, représenter la densité atomique offre généralement peu d'intérêt. De plus, cette densité est extrêmement sensible aux variations fines de grandissement local intervenant entre des phases de champ d'évaporation différent. Il est généralement plus approprié de construire des cartes 3D de composition chimique pour chaque espèce (figure 9). Dans chaque volume élémentaire Δx Δy Δz, les fractions atomiques de chaque espèce sont calculées Xi = Ni /ΣNi . Le volume d'échantillonnage est adapté afin de minimiser les fluctuations statistiques.
Une manière simple de visualiser la morphologie d'une phase d'intérêt est de construire une surface d'isocomposition ...
Cet article fait partie de l’offre
Techniques d'analyse
(289 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Imagerie tridimensionnelle en SAT
BIBLIOGRAPHIE
-
(1) - BRANDON (D.G.) - On field evaporation. - Philosophical Magazine, 14, p. 803-820 (1966).
-
(2) - TSONG (T.T.) - Field ion image formation. - Surface Science, 70, p. 211-233 (1978).
-
(3) - HAYDOCK (R.), KINGHAM (D.R.) - * - Surf. Sci., 103, p. 239 (1981).
-
(4) - KELLY (T.F.), LARSON (D.J.) - Materials characterization. - 44, p. 59-85 (2000).
-
(5) - DECONIHOUT (B.), VURPILLOT (F.), GAULT (B.), DA COSTA (G.), BOUET (M.), BOSTEL (A.), BLAVETTE (D.), HIDEUR (A.), MARTEL (G.), BRUNEL (M.) - Toward a laser assisted wide-angle tomographic atom-probe. - Proc. Intern. Field Emission Symposium, Graz (2004), Surface and Interface Analysis, 39, p. 278-282 (2007).
-
(6) - KELLOG (G.), TSONG (T.T.) - Pulsed laser atom-probe. - J. Appl. Phys., USA, 51, no 2, p.1184 (1980).
- ...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Sonde Atomique Tomographique Grand Angle Laser à très haute résolution en masse, BOSTEL Alain , DECONIHOUT Bernard , YAVOR Mickael , RENAUD ludovic, Date de dépôt 12/10/2007 Numero INIST 07 07178
Sonde Atomique Tomographique Grand Angle à évaporation assistée par une impulsion Laser femtoseconde " blanche ", DECONIHOUT Bernard, VELLA Angela, Francois Vurpillot, BREVET INTERNATIONAL n WO/2010/000574 Numéro de la demande int.: PCT/EP2009/057079 Date de la pub. int.:07.01.2010 Numero INIST 08_03218
HAUT DE PAGE2.1 Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)
Cameca (métrologie de semi-conducteurs) http://www.cameca.com
HAUT DE PAGECet article fait partie de l’offre
Techniques d'analyse
(289 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive