Présentation
En anglaisRÉSUMÉ
Les nano-mousses métalliques sont des structures bi-continues constituées de ligaments métalliques de dimensions nanométriques et de l’ordre de 50% de porosité. De cette architecture découlent des propriétés plasmoniques, mécaniques et chimiques spécifiques. Elles peuvent être exploitées pour des applications : actionneur mécanique ; capteur ; formation d’interconnexions pour la microélectronique ; catalyse et électrocatalyse ; composants de batterie et de supercondensateur. Ces perspectives concernent les domaines de la santé, de l’énergie et de l’environnement.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Nanofoams are bicontinuous structures made up of metallic ligaments of nanometric size and of the order of 50% porosity. From this architecture derives specific plasmonic, mechanical and chemical properties. They can be exploited for applications, such as: mechanical actuator; sensor; formation of interconnections for microelectronics; catalysis and electrocatalysis; battery components and supercapacitor. These perspectives address the areas of health, energy and the environment.
Auteur(s)
-
Yannick CHAMPION : Directeur de recherches au CNRS Laboratoire science et ingénierie des matériaux et procédés, Université Grenoble Alpes, CNRS, Grenoble INP, Saint Martin d’Hères, France
INTRODUCTION
Les nano-mousses métalliques sont des matériaux anciens : le premier brevet a été déposé par Raney en 1927, sur le nickel, pour une application en catalyse hétérogène. Ce sont aussi des matériaux très récents, avec des études intensives depuis les années 2000 et la mise en valeur de comportements inattendus comme par exemples les propriétés catalytiques de l’or nanométrique, la sélectivité chimique et biologique, et la plasmonique. Le besoin d’innovation dans le domaine des matériaux est permanent, et s’intensifie même face aux enjeux que se fixent les sociétés, relevant de l’évolution naturelle (amélioration des conditions de la vie : santé, industrie, transport, bâtiment, etc.) et de nécessités environnementales (énergie, écologie). Ce contexte rend nécessaire la création de nouvelles fonctions qui, de fait, reposeront principalement sur de nouveaux matériaux, de nouvelles architectures ou de nouveaux concepts.
Les mousses métalliques (micrométriques) ont une production de masse, et sont principalement utilisées pour leurs propriétés mécaniques et dans l’industrie métallurgique, par exemple. Leurs petites sœurs, les nano-mousses métalliques, outre leurs applications en catalyse, sont plus confidentielles en raison notamment des faibles quantités produites. Les secteurs de niche qu’elles intéressent sont toutefois importants. Les perspectives d’applications abordées dans cet article concernent les actionneurs, les capteurs (en particulier les bio-capteurs), la spectroscopie Raman et la spectroscopie de fluorescence issues de la plasmonique, l’interconnexion en microélectronique, la catalyse et l’électro-catalyse, les batteries et les supercondensateurs.
Les nano-mousses sont des matériaux cellulaires à structure bi-continue. Dans cet article, les nano-mousses décrites sont surtout celles issues du procédé de dissolution sélective (dealloying) car elles sont les plus répandues. Elles sont formées de ligaments désordonnés, connectés, de dimensions nanométriques et développant une porosité de l’ordre de 50 %. Les perspectives d’applications développées s’appuient sur des rappels, dans un premier temps, sur les propriétés optiques, mécaniques et chimiques des nano-mousses métalliques, avec la mise en valeur systématique de la nature nanométrique et de la forte surface spécifique.
MOTS-CLÉS
KEYWORDS
properties | metallic nanofoam
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Matériaux > Étude et propriétés des métaux > Matériaux métalliques avancés > Nano-mousses métalliques - Propriétés et perspectives > Propriétés
Accueil > Ressources documentaires > Innovation > Nanosciences et nanotechnologies > Nanomatériaux : propriétés > Nano-mousses métalliques - Propriétés et perspectives > Propriétés
Accueil > Ressources documentaires > Sciences fondamentales > Nanosciences et nanotechnologies > Nanomatériaux : propriétés > Nano-mousses métalliques - Propriétés et perspectives > Propriétés
Cet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(205 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Propriétés
2.1 Propriétés optiques : plasmoniques
Les propriétés optiques des matériaux sont le résultat de l’interaction de la lumière (un rayonnement électromagnétique, de l’infrarouge à l’ultraviolet) avec la matière. La physique mise en jeu est liée aux propriétés diélectriques des phases en présence. Pour les métaux nobles et de transition, les propriétés optiques sont issues de la résonance des oscillations cohérentes des électrons de conduction à l’interface entre le métal et un milieu diélectrique environnant, sous l’effet du champ électromagnétique oscillant de la lumière incidente. On parle de résonance de plasmons de surface (RPS).
Un premier type de RPS est lié à une résonance localisée (RPSL), les électrons étant excités par le rayonnement à la surface d’une nanoparticule métallique. Les RPSL sont sensibles à la forme de l’objet, et des réponses optiques multiples sont produites pour des géométries à rapport de forme élevé (par exemple pour une particule ayant la forme d’un bâtonnet ou d’une plaquette). La géométrie est ainsi un facteur d’ajustement ou d’optimisation des propriétés recherchées. Un second type de RPS se produit pour des films minces et pour lequel les plasmons ont la propriété de se déplacer sur la surface du film. On les appelle polaritons de plasmon de surface (PPS).
Les phénomènes physiques sont complexes ; les principaux éléments théoriques sont rappelés ci-dessous pour nourrir la discussion sur les propriétés optiques des nano-mousses métalliques et leurs applications. Le lecteur trouvera de nombreuses revues sur le sujet ...
Cet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(205 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Propriétés
BIBLIOGRAPHIE
-
(1) - LILLEODDEN (E.T.), VOORHEES (P.W.) - On the topological, morphological, and microstructural characterization of nanoporous metals. - Mrs Bulletin, 43, p. 20-26 (2018).
-
(2) - HASHIMOTO (T.), TSUTSUMI (K.), FUNAKI (Y.) - Nanoprocessing based on bicontinuous microdomains of block copolymers : Nanochannels coated with metals. - Langmuir, 13, p. 6869-6872 (1997).
-
(3) - SCHAEDLER (T.A.), JACOBSEN (A.J.), TORRENTS (A.), SORENSEN (A.E.), LIAN (J.), GREER (J.R.), VALDEVIT (L.), CARTER (W.B.) - Ultralight metallic microlattices. - Science, 334, p. 962-965 (2011).
-
(4) - CHAMPION (Y.), LANGLOIS (C.), GUERIN-MAILLY (S.), LANGLOIS (P.), BONNENTIEN (J.L.), HYTCH (M.J.) - Near-perfect elastoplasticity in pure nanocrystalline copper. - Science, 300, p. 310-311 (2003).
-
(5) - ZHANG (J.X.), ZHANG (L.D.), XU (W.) - Surface plasmon polaritons : physics and applications. - Journal of Physics D-Applied Physics, 45, p. 19 (2012).
-
...
DANS NOS BASES DOCUMENTAIRES
1.1 Laboratoires – Bureaux d’études – Écoles – Centres de recherche
Institut de physique des matériaux, Université de Hambourg, Allemagne
3D packaging researche Center, Georgia Institute of technology, Atlanta, États-Unis
Institut d’études avancées, Université de Strasbourg
Laboratoire SIMaP, UGA, G-INP, CNRS, Grenoble
Laboratoire LEPMI, UGA, G-INP, CNRS, Grenoble
HAUT DE PAGECet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(205 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive