Présentation
EnglishRÉSUMÉ
Dans la transformation des polymères en matières plastiques, la connaissance des relations entre la pression, le volume spécifique et la température, ou entre la pression, la masse volumique et la température est fondamentale. Cela est encore plus vrai dans le processus le plus couramment utilisé qu’est l'injection. En effet, lors du retrait, le polymère thermoplastique fondu se contracte et le volume occupé par la pièce solidifiée devient inférieur à celui de l'empreinte du moule. Cette contraction correspond à une organisation de la matière selon une structure semi-cristalline plus dense que la phase amorphe de l'état fondu. Par l’identification des paramètres critiques qui gouvernent l’injection plastique, les mesures de PvT permettent d'améliorer les paramètres des logiciels de simulation de ces phénomènes, et ainsi de les rendre mieux prévisibles.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Bernard LE NEINDRE : Docteur ès sciences - Directeur de recherche au Centre national de la recherche scientifique (CNRS)
-
Patrick CANCOUËT : Docteur ès sciences physiques, ingénieur chimiste - Directeur recherches et développement (ATOMER)
INTRODUCTION
La connaissance des relations entre la pression, le volume spécifique et la température (PvT) ou entre la pression, la masse volumique (l'inverse du volume spécifique) et la température (P, , T) des polymères est fondamentale pour la transformation des polymères en matières plastiques, notamment dans le processus le plus couramment utilisé : l'injection. En effet, lors de l'injection, une empreinte est remplie de polymère thermoplastique fondu. La pièce se contracte lors du refroidissement et le volume occupé par la pièce solidifiée est inférieur à celui de l'empreinte du moule (phénomène communément appelé retrait). Cette contraction correspond à une organisation de la matière selon une structure semi-cristalline plus dense que la phase amorphe de l'état fondu. Dans la phase cristalline, les segments de chaînes s'assemblent de façon ordonnée et compacte. En outre, au cours du refroidissement, des défauts apparaissent ; certains sont des défauts d'aspect ou retassures, d'autres des défauts géométriques ou gauchissement. Les mesures de PvT permettent d'identifier les paramètres critiques qui commandent l'injection plastique et d'améliorer les paramètres des logiciels de simulation de ces phénomènes en rendant ces derniers mieux prévisibles.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Sciences fondamentales > Caractérisation et propriétés de la matière > Équations d'états et constantes thermiques > Mesure des volumes spécifiques des polymères > Conclusion
Accueil > Ressources documentaires > Matériaux > Plastiques et composites > Bases de données : polymères > Mesure des volumes spécifiques des polymères > Conclusion
Cet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Conclusion
Deux techniques ont été présentées pour mesurer les PvT des polymères. Dans la technique du piston-cylindre, le polymère est directement comprimé dans une matrice. Cette technique est facile à mettre en œuvre et permet des montées ou des descentes rapides en température. Elle est bien adaptée pour simuler les procédés d'injection, mais elle reste peu crédible pour la mesure de PvT, surtout en montée de température. Le dispositif piézométrique est parfaitement hydrostatique, avec des vitesses de montées ou de descentes en température et pression très lentes, de façon à éviter les gradients de température et de pression au sein de l'échantillon ; il fournit des mesures précises de PvT. Par contre, même automatisé, ce dispositif est très lourd à mettre en œuvre.
Comme la majorité des polymères sont dans un état de quasi-équilibre thermodynamique dans la plus grande partie de leur diagramme de phases, les seules données fiables utilisables, par exemple, pour simuler les procédés d'injection sont des mesures expérimentales obtenues dans des conditions isothermes et hydrostatiques par le dispositif piézométrique.
Cet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusion
BIBLIOGRAPHIE
-
(1) - GUYOT (A.) - Polymérisation. - [J 5 830] Base documentaire « Opérations unitaires. Génie de la réaction chimique » (2000).
-
(2) - CHATAIN (M.) - Comportement physique et thermomécanique des plastiques. - [A 3 110] Base documentaire « Plastiques et composites» (1993).
-
(3) - TEYSSÈDRE (G.), LACABANNE (C.) - Caractérisation des polymères par analyse thermique. - [AM 3 274] Base documentaire « Plastiques et composites » (1997).
ANNEXES
EHRENSTEIN (G.W.), RIEDEL (G.), TRAWIEL (P.) - Thermal analysis of plastics : Theory and practice. - Hanser Gardner Publications (2004).
OEHMKE (F.), WIEGMANN (T.) - * - Proc. conf. ANTEC'94, 2, p. 2247 (1994).
CHAKRAVORTY (S.), BROWN (C.S.) - * - NPL Report. DMM (D), p. 262 (1995).
CHANG (R.Y.), CHEN (C.H.), SU (K.S.) - * - Polym. Eng. Sci., 36, 13, p. 1789 (1996).
HOBBS (C.B.), BROWN (C.S.) - * - NPL Report. CMMT (A), p. 163 (1999).
FAKHREDDINE (Y.A.), ZOLLER (P.) - The equation of state of solid and molten poly (butylene terephthalate) to 300 oC and 200 MPa. - J. Poly. Sci., Part B, vol. 29, p. 1141 (1991).
ZOLLER (P.), BOLLI (P.), PAHUD (V.), ACKERMANN (H.) - Apparatus for measuring pressure-volume-temperature relationships of polymers to 350 oC and 2 200 kg/cm2. - Rev. Sci. Instrum., 47, p. 948 (1976).
HELLWEGE (K.H.), KNAPPE (W.), LEHMANN (P.) - * - Kolloid-Z. Z. Polym., 183, p. 110 (1962}.
QUACH (A.), SIMHA (R.) - Pressure-volume-temperature properties and transitions of amorphous polymers ; polystyrene and poly (orthomethylstyrene). - J. Appl. Phys., vol. 42, p. 4592 (1971).
WOHLFARTH (C.) - COR-eos and BH-eos parameters for polymer melts with the error in the all-variables method. - J. Appl. Polym. Sci., vol. 48, p. 1923 (1993).
RODGERS (P.A.) - Pressure-volume-temperature relationships for polymeric liquids : A review of equations of state and their characteristic parameters for 56 polymers. - J. Appl. Polym. Sci., vol. 48, p. 1061 (1993).
YI (Y.X.), ZOLLER (P.) - An experimental and theoretical study of the PVT equation of state of butadiene and isoprene elastomers to 200 oC and 200 MPa. - J. Polym. Sci., Polym. Phys. Ed., vol. 31, p. 779 (1993).
WOOD (L.A.), MARTIN (G.M.) - * - J. Res. Natl. Bur. Stand. A. Phys. Chem., 68, p. 259 (1964).
OLABISI (O.), SIMHA (R.) - Pressure-volume-temperature...
Cet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive