Présentation

Article

1 - PRÉSENTATION GÉNÉRALE

  • 1.1 - Définition et présentation
  • 1.2 - Spécificités de l’utilisation d’une extrudeuse comme réacteur continu
  • 1.3 - Avantages et inconvénients

2 - EXEMPLES D’APPLICATIONS INDUSTRIELLES

3 - PRINCIPES FONDAMENTAUX EN EXTRUSION RÉACTIVE

  • 3.1 - Réactions chimiques
  • 3.2 - Monovis ou bivis ?
  • 3.3 - Fonctionnement de l’extrudeuse bivis

4 - APPORT DE LA MODÉLISATION

5 - CONCLUSION

Article de référence | Réf : AM3654 v1

Principes fondamentaux en extrusion réactive
Procédés d’extrusion réactive

Auteur(s) : Françoise BERZIN, Guo-Hua HU

Date de publication : 10 juil. 2004

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

L'extrusion réactive montre de grandes potentialités et commence à faire ses preuves dans l'industrie. Ce procédé consiste à générer une transformation chimique volontairement au sein de l'extrudeuse, qui devient ainsi un réacteur continu. Cet article présente les principales caractéristiques de ce procédé d'extrusion réactive et liste quelques exemples d'applications. Les principes fondamentaux du procédé et l’apport de la modélisation sont ensuite abordés. 

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Françoise BERZIN : Ingénieur de l’École des Mines de Douai - Docteur de l’École des Mines de Paris - Maître de Conférences à l’Université de Reims Champagne-Ardenne

  • Guo-Hua HU : Docteur de l’Université Louis-Pasteur, Strasbourg - Professeur à l’Institut National Polytechnique de Lorraine (Nancy) - Laboratoire des Sciences du Génie chimique (CNRS-ENSIC)

INTRODUCTION

L’extrusion est un procédé continu consistant à mettre en forme ou à transformer des polymères au sein d’un système vis / fourreau. Sauf quelques rares exceptions, les mécanismes impliqués sont purement thermomécaniques et tout processus chimique est à proscrire a priori. On parle d’extrusion réactive lorsque des transformations chimiques sont volontairement générées, de manière contrôlée. L’extrudeuse devient alors un véritable réacteur continu. Après une présentation des spécificités, des avantages et inconvénients de l’utilisation de l’extrudeuse comme réacteur continu, les principales applications de cette technologie dans le domaine des matériaux polymères synthétiques ou d’origine naturelle seront illustrées à l’aide d’exemples. Seront ensuite décrits les principes fondamentaux du procédé d’extrusion réactive et l’apport de la modélisation à ce type de procédé.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-am3654


Cet article fait partie de l’offre

Plastiques et composites

(397 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

3. Principes fondamentaux en extrusion réactive

3.1 Réactions chimiques

Comme mentionné précédemment, la chimie en extrudeuse se déroule dans des conditions thermomécaniques proches de celles d’un procédé d’extrusion classique, qui sont très différentes de celles rencontrées habituellement dans les réacteurs. Par exemple, le milieu réactionnel est particulier puisqu’il est essentiellement composé de polymères fondus en l’absence de solvants. Sa viscosité et sa température sont souvent très élevées. L’absence de solvants fait que les réactifs mis en jeu peuvent être immiscibles. Ainsi, la réaction ne se déroule peut-être plus sur l’ensemble du volume réactionnel mais se localise principalement aux interfaces. Par ailleurs, le temps de réaction est très court puisqu’il est imposé par le temps de séjour moyen dans l’extrudeuse utilisée, ce dernier se situant souvent entre quelques secondes et quelques minutes.

Ces conditions thermomécaniques et chimiques particulières font que toute réaction impliquant des réactifs ou générant des produits thermiquement instables est à proscrire. Les réactions dont la cinétique est trop lente par rapport au temps de séjour ne sont, a priori, pas de bonnes candidates pour l’extrusion réactive. Celles dont la cinétique est trop rapide et dont la quantité de chaleur dégagée est trop importante ne le sont pas non plus. Une réaction idéale pour l’extrusion réactive est celle dont la cinétique est suffisamment rapide, dont la chaleur dégagée est faible et dont les réactifs et les produits sont thermiquement stables.

Dans la pratique, la chimie appliquée à l’extrusion réactive repose généralement sur les deux types de réactions suivants : radicalaire et fonctionnel. Il faut aussi noter que des réactions bien connues et maîtrisées en solution ou dans des conditions conventionnelles peuvent parfois présenter des comportements cinétiques et/ou mécaniques très différents quand elles sont conduites dans les conditions de mise en œuvre des polymères.

Cela peut être, suivant les cas, un inconvénient ou un avantage.

HAUT DE PAGE

3.2 Monovis ou bivis ?

Le choix du type d’extrudeuse est bien entendu un point clé dans...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Plastiques et composites

(397 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Principes fondamentaux en extrusion réactive
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - XANTHOS (M.) -   Reactive Extrusion : Principles and Practice.  -  Hanser, Munich (1992).

  • (2) - KELLEY (J.M.) -   Styrene polymerization process.  -  Brevet américain US 5 274 029 (1993).

  • (3) - SCHMIDT (L.R.), LOVGREN (E.M.), MEISSNER (P.G.) -   Continuous melt polymerization of poly(ether imides).  -  Intern. Polym. Proc., no 4, p. 270-276 (1989).

  • (4) - GOUINLOCK (E.V.), MARCINIAK (H.W.), SHATZ (M.H.), QUINN (E.J.), HINDERSINN (R.R.) -   Preparation and properties of copolyesters polymerized in a vented extruder.  -  J. Appl. Polym. Sci., no 12, p. 2403-2413 (1968).

  • (5) - PARK (H.J.), RHIM (H.S.), KIM (H.M.), KIM (D.H.), YOO (S.C.), KIM (S.H.), PARK (S.B.), HAN (I.S.), PARK (J.T.), KIM (S.M.) -   Process for preparing aromatic polyamide fibers and films.  -  Brevet européen EP 246 732 (1987).

  • (6) - BARTILLA (T.), KIRCH (D.), NORDMEIER (J.), PROEMPER...

1 À lire également dans nos bases

VERGNES (B.) - PUISSANT (S.) - Extrusion – Extrusion monovis (partie 1). - [AM 3 650] Traité Plastiques et Composites (2002).

VERGNES (B.) - PUISSANT (S.) - Extrusion – Extrusion monovis (partie 2). - [AM 3 651] Traité Plastiques et Composites (2003).

VERGNES (B.) - CHAPET (M.) - Extrusion – Procédés d'extrusion bivis. - [AM 3 653] Traité Plastiques et Composites (2001).

KOOPMANS (R.) - Défauts d'extrusion. - [AM 3 657] Traité Plastiques et Composites (2002).

NIVON (M.) - SANLIAS (G.) - Sécurité dans les techniques...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Plastiques et composites

(397 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS