Présentation

Article

1 - GÉNÉRALITÉS

2 - ASPECTS FONDAMENTAUX

3 - INTÉRÊTS ET LIMITES DE LA SUPERPLASTICITÉ

  • 3.1 - Limites
  • 3.2 - Intérêts

4 - MATÉRIAUX INDUSTRIELS À COMPORTEMENT SUPERPLASTIQUE

5 - PROCÉDÉS DE MISE EN FORME

6 - RENTABILITÉ DE LA MISE EN FORME SUPERPLASTIQUE

7 - PROPRIÉTÉS DES PIÈCES APRÈS FORMAGE SUPERPLASTIQUE

8 - CONCLUSION

Article de référence | Réf : M613 v1

Propriétés des pièces après formage superplastique
Superplasticité

Auteur(s) : Jean-Jacques BLANDIN, Michel SUERY

Date de publication : 10 juil. 1996

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

Auteur(s)

  • Jean-Jacques BLANDIN : Ingénieur de l’École centrale de Lyon - Docteur de l’Institut national polytechnique de Grenoble - Chargé de recherche au CNRS - Institut national polytechnique de Grenoble

  • Michel SUERY : Docteur ès sciences physiques - Directeur de recherche au CNRS - Directeur du laboratoire Génie physique et mécanique des matériaux ESA CNRS no 5010 - Institut national polytechnique de Grenoble

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

La superplasticité est une propriété de déformation plastique à haute température ( T0,5 T f où T f est la température de fusion du métal exprimée en kelvins) d’un matériau polycristallin qui se caractérise par des allongements à rupture importants pouvant dépasser 1 000 % au cours d’un essai de traction. Cette grande stabilité de la déformation est mise à profit pour la mise en forme par thermoformage de pièces souvent complexes et difficiles à mettre en forme selon une autre technique. La mise en forme superplastique trouve ainsi de nombreuses applications, en particulier dans l’aéronautique, grâce à l’utilisation des alliages de titane et d’aluminium.

Le présent article traitera des aspects fondamentaux de la superplasticité et détaillera les principales familles de matériaux pouvant présenter ce comportement. Quelques considérations sur les procédés de mise en forme seront également présentées.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-m613


Cet article fait partie de l’offre

Mise en forme des métaux et fonderie

(125 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

7. Propriétés des pièces après formage superplastique

Les propriétés des pièces obtenues par mise en forme superplastique ont déjà été évoquées à propos des avantages de la superplasticité 3.2. Ce sont essentiellement des propriétés isotropes du fait de la disparition (ou tout au moins de la réduction) de la texture durant la déformation et des caractéristiques mécaniques élevées en raison de la finesse de la taille des grains.

Une attention particulière a été portée à ces propriétés dans le cas des alliages susceptibles de s’endommager durant la mise en forme, comme les alliages d’aluminium. Les travaux effectués sur l’alliage 7475 ont ainsi montré que les caractéristiques mécaniques sont sensiblement réduites dès lors qu’un taux de cavitation d’environ 1 % est atteint, ce qui correspond dans le cas de la microstructure étudiée à un allongement de l’ordre de 150 %. Seule la ductilité de l’alliage décroît fortement dès que l’allongement dépasse 50 % . C’est cette baisse des caractéristiques qui explique la généralisation actuelle des procédés utilisant une pression hydrostatique lorsque le matériau a tendance à s’endommager durant sa mise en forme superplastique.

...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mise en forme des métaux et fonderie

(125 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Propriétés des pièces après formage superplastique
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - UNDERWOOD (E.E.) -   Superplasticity and related phenomena (Superplasticité et phénomènes associés).  -  Journal of Metals 14, p. 914 (1962).

  • (2) - ASHBY (M.F.), VERRALL (R.A.) -   Diffusion-accommodated flow and superplasticity (Superplasticité et déformation contrôlée par de la diffusion).  -  Acta Metallurgica, 21, p. 149-163 (1973).

  • (3) - BALL (A.), HUTCHINSON (M.M.) -   Superplasticity in the aluminium-zinc eutectoid (Superplasticité de l’alliage eutectoïde aluminium-zinc),  -  Metals Science Journal, 3, p. 1-7 (1969).

  • (4) - MUKHERJEE (A.K.) -   The rate controlling mechanism in superplasticity (Les mécanismes de contrôle de la déformation superplastique),  -  Materials Science Engineering, 8, p. 83-89 (1971).

  • (5) - RAJ (R.), CHYUNG (C.K.) -   Solution precipitation creep in glass ceramics (Fluage par dissolution – précipitation dans des céramiques à phase vitreuse),  -  Acta Metallurgica, 29, p. 159-166 (1980).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mise en forme des métaux et fonderie

(125 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS