Présentation
EnglishNOTE DE L'ÉDITEUR
La norme ISO 11359-2 du 01/10/1999 citée dans cet article a été remplacée par la norme ISO 11359-2 de novembre 2021 : Plastiques - Analyse thermomécanique (TMA) - Partie 2 : détermination du coefficient de dilatation thermique linéique et de la température de transition vitreuse
Pour en savoir plus, consultez le bulletin de veille normative VN2111 (Décembre 2021).
Les normes ISO 180 de décembre 2000, ISO 180/A1 de décembre 2006 et ISO 180/A2 d'avril 2013 citées dans cet article ont été remplacées par la norme NF EN ISO 180 (T51-911) : Plastiques - Détermination de la résistance au choc Izod (Révision 2019)
Pour en savoir plus, consultez le bulletin de veille normative VN1912 (Janvier 2020).
La norme NF EN ISO 527-1 d'avril 2012 citée dans cet article a été remplacée par la norme NF EN ISO 527-1 (T51-034-1) : Plastiques - Détermination des propriétés en traction - Partie 1: Principes généraux (Révision 2019)
Pour en savoir plus, consultez le bulletin de veille normative VN1909 (Octobre 2019).
Les normes NF EN ISO 1183-1 de janvier 2013 et NF EN ISO 1183-2 d'août 2005 citées dans cet article ont été remplacées par les normes NF EN ISO 1183-1 et -2 (T51-037-1 et -2) : Plastiques - Méthodes de détermination de la masse volumique des plastiques non alvéolaires
- Partie 1 : méthode par immersion, méthode du pycnomètre en milieu liquide et méthode par titrage
- Partie 2 : méthode de la colonne à gradient de masse volumique (Révision 2019)
Pour en savoir plus, consultez le bulletin de veille normative VN1907 (Septembre 2019).
Les normes NF EN ISO 178 de février 2011 et NF EN ISO 178/A1 de juin 2013 citées dans cet article ont été remplacées par la norme NF EN ISO 178 (T51-001) "Plastiques - Détermination des propriétés en flexion" (Révision 2019)
Pour en savoir plus, consultez le bulletin de veille normative VN1905 (mai 2019).
La norme NF EN ISO 527-3 d'octobre 1995 citée dans cet article a été remplacée par la norme NF EN ISO 527-3 (T51-034-3) "Plastiques - Détermination des propriétés en traction - Partie 3 : Conditions d'essai pour films et feuilles" (Révision 2018)
Pour en savoir plus, consultez le bulletin de veille normative VN1812 (décembre 2018).
Les normes ISO 179-2 de décembre 1997, ISO 179-2/AC1 de novembre 1998 et ISO 179-2/A1 de juin 2011 citées dans cet article ont été remplacées par la norme ISO 179-2 : Plastiques - Détermination des caractéristiques au choc Charpy - Partie 2: Essai de choc instrumenté (Révision 2020)
Pour en savoir plus, consultez le bulletin de veille normative VN2005 (Juin 2020).
RÉSUMÉ
Dès leurs débuts, les polyoxyméthylènes (POM) ont été identifiés comme pouvant se substituer aux métaux dans les pièces à fonctions métalliques (pignons, paliers, axes). En effet, ces polymères particuliers se distinguent par une heureuse combinaison de différentes propriétés à basse et haute température : forte rigidité, dureté de surface élevée, excellente mémoire élastique, coefficient de frottement faible, résistance à l’abrasion et aux solvants… A tous ces atouts, il faut rajouter les bas prix de fabrication et d’entretien de ces pièces usinés en matière plastique.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Jacques DESBONNET : Ingénieur chimiste HEI - Responsable du développement automobile, Ticona France
INTRODUCTION
La commercialisation des polyacétals au début des années 1960 a marqué l’entrée dans les bureaux d’études du premier polymère technique se posant en substitution des métaux dans les pièces à fonctions mécaniques. En effet, les propriétés de rigidité, de dureté de surface, de tenue mécanique à long terme ainsi que l’effet ressort et le coefficient de frottement très bas ont permis le développement d’axes, de paliers et de pignons autolubrifiés avec des réductions de coûts de fabrication et d’entretien très importants. Les matières plastiques ont pu dès lors perdre leur connotation péjorative de bas de gamme et acquérir leurs lettres de noblesse.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Propriétés
En raison de leur taux de cristallinité élevé, dû à la structure non ramifiée de leurs chaînes macromoléculaires, les POM se distinguent par une heureuse combinaison de différentes propriétés, en particulier :
-
des propriétés mécaniques élevées à basse (–40 ˚C) et à haute température (jusqu’à 105 ˚C) ;
-
une excellente mémoire élastique (effet ressort) ;
-
un coefficient de frottement faible et une résistance à l’abrasion élevée (d’où l’appellation de polymères autolubrifiés) ;
-
une excellente résistance aux solvants et aux bases pour les copolymères ;
-
une faible perméabilité aux gaz ;
-
de bonnes propriétés diélectriques.
Les propriétés des POM dépendent en partie de leur taux de cristallinité et de leur masse molaire (tableau 2).
2.1 Propriétés physiques
La masse volumique des POM non modifiés (sans charge, sans renfort, sans élastomère) est comprise entre 1,41 et 1,42 g/cm3 (tableau 3). En raison de la cristallinité plus élevée des homopolymères, leur masse volumique est un peu plus élevée que celle des copolymères.
HAUT DE PAGE2.1.2 Indice de fluidité à chaud
L’indice de fluidité mesuré à 190 ˚C sous une charge de 2,16 kg (NF EN ISO 1133) des POM commerciaux est compris entre 2 et 45 cm3/10 min. Un faible indice de fluidité indique une masse molaire et une viscosité à l’état fondu élevées.
HAUT DE PAGECet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Propriétés
ANNEXES
La consommation mondiale de POM était estimée à 660 kt en 2003, dont 205 kt en Europe, 135 kt aux États-Unis et 310 kt, soit plus de 45 %, en Asie. Le marché chinois, en très forte expansion, est estimé à plus de 100 kt et le marché japonais à 90 kt.
Le taux moyen annuel de croissance, dans le monde, est estimé entre 6 et 7 %, mais le développement se fait surtout en Asie.
En France, bien qu’il n’y ait pas de producteur de POM, la consommation est estimée en 2003 à 25 kt, en stagnation depuis plusieurs années (tableaux 1 et 2).
HAUT DE PAGE
CLARK (E.S.) - Molecular orientation in injection molding of acetal homopolymer - , SPE Journal, 23, no 7 (1967).
BOEHME (E.) - Études sur la structure de l’acétal homopolymère et applications pratiques - . Document Du Pont de Nemours, Genève (1972).
SAECHTLING (H.) - International Plastics Hand-book - . Carl Hanser Verlag (1995).
Modern Plastics Encyclopedia...
Cet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive