Présentation
EnglishRÉSUMÉ
Les alliages modernes peuvent faire appel à de nombreux éléments, si bien que le concepteur se heurte à deux problèmes majeurs, d’une part la complexité des relations entre composition, procédés et propriétés, et d’autre part à l’immensité de l’espace des compositions possibles. Cet article montre comment certains outils computationnels (la thermodynamique prédictive ainsi que des techniques issues de l’intelligence artificielle comme la fouille de données ou l’optimisation combinatoire) permettent de gérer ces problèmes et de concevoir de nouveaux alliages par le calcul, avec des gains en temps, en coûts et en performances par rapport à des méthodes par essai-erreur.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Franck TANCRET : Professeur des Universités - Nantes Université, Institut des Matériaux de Nantes Jean Rouxel (IMN), Nantes, France
INTRODUCTION
Le présent article décrit une méthode générique de conception d’alliages par le calcul, qui permet des gains en temps, en coûts et en performances par rapport à des méthodes de développement par essai-erreur. Cette méthode s’appuie d’une part sur des méthodes issues de l’intelligence artificielle, telles l’optimisation combinatoire multi-objectif (algorithmes génétiques, etc.) et la fouille de données (réseaux de neurones artificiels, processus gaussiens, etc.), et d’autre part sur la thermodynamique prédictive par la méthode dite « Calphad » (pour « CALculation of PHAse Diagrams » en anglais). Ce sont les principaux outils qui permettent aujourd’hui d’embrasser la complexité des espaces de composition des matériaux métalliques modernes, qu’il s’agisse d’établir des liens entre composition, procédés et propriétés, ou de rechercher les compositions qui conduiront à des combinaisons optimales de caractéristiques.
La méthode concerne potentiellement toute l’industrie métallurgique (aciers, alliages de nickel, d’aluminium, de titane, etc.), et tous les domaines nécessitant l’emploi d’alliages métalliques performants : transport (automobile, aéronautique, spatial, ferroviaire, naval, etc.), énergie (nucléaire, gaz, pétrole, etc.), génie chimique (réacteurs, etc.), biomédical (prothèses, implants, agrafes, etc.), etc. Le contexte global du développement de nouveaux alliages est tout d’abord exposé sous une triple perspective historique, combinatoire et de complexité. Après la présentation de quelques caractéristiques techniques des outils exploités, la méthode est illustrée à l’aide d’exemples de conception d’alliages complexes, tels les superalliages à base de nickel ou les alliages multi-concentrés dits « à haute entropie ». On montre ensuite comment la méthode peut être exploitée pour concevoir des matériaux en prenant en compte des considérations environnementales (éco-conception). Quelques perspectives liées aux développements en cours de la méthode sont finalement exposées.
Domaine : Matériaux
Degré de diffusion de la technologie : Maturité
Technologies impliquées : Thermodynamique prédictive/méthode Calphad [M 4 105] ; intelligence artificielle [H 3 720], dont apprentissage machine [H 5 010] et optimisation combinatoire [S 7 218]
Domaines d’application : Métallurgie, et tous les domaines nécessitant l’emploi d’alliages métalliques performants : fabrication de moyens de transport (automobile, aéronautique, spatial, ferroviaire, naval, etc.), énergie (nucléaire, gaz, pétrole, etc.), génie chimique (réacteurs, etc.), biomédical (prothèses, implants, agrafes, etc.), etc.
Principaux acteurs français :
-
Centres de compétence : Nantes Université (Institut des Matériaux de Nantes Jean Rouxel, IMN) ; Mines Saint-Étienne (Laboratoire Georges Friedel, LGF)
-
Industriels : Safran
Autres acteurs dans le monde : Principalement des académiques, en Europe (Royaume-Uni, Pays-Bas, Allemagne), aux États-Unis et en Chine
Contact : [email protected]
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Étude et propriétés des métaux
(202 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Applications ou mise en œuvre
Ce chapitre vise à illustrer la méthode précédemment décrite, à l’aide d’exemples de réalisations concrètes, c’est-à-dire ayant conduit à la fabrication et à la caractérisation expérimentale de matériaux. Le premier exemple (§ 3.1) peut être considéré comme un cas typique de la méthode, où la construction et la validation des modèles, de même que l’optimisation combinatoire, ne posent pas de problème particulier. Le deuxième exemple (§ 3.2) illustre au contraire certaines des difficultés que l’on peut rencontrer dans la mise en œuvre de la méthode : limites de la capacité prédictive de Calphad, apprentissage machine par fouille statistique d’un petit nombre de données bruitées, et réduction du nombre de variables grâce à des descripteurs physiques calculés, nécessité d’ensemencement lors de l’optimisation combinatoire.
3.1 Conception de superalliages à base de nickel
Ce premier exemple est typique de la stratégie globale présentée ici : l’utilisation conjointe d’optimisation multi-objectif, de Calphad, de fouille de données et de quelques modèles simples. Il s’agit de la conception de superalliages à base de nickel à haute tenue mécanique, pour des applications à température élevée, dans des turbines notamment.
Le principe de départ était d’explorer le domaine couvert par un brevet récent, celui de l’alliage AD730, afin d’y trouver les compositions susceptibles de conduire aux meilleurs compromis possibles entre caractéristiques, si possible avantageux par rapport à la composition commerciale nominale. En effet, le brevet couvre une gamme de compositions beaucoup plus large que celle de la spécification nominale.
Le problème d’optimisation était défini de la manière suivante :
-
objectifs :
-
maximisation de la contrainte de rupture en traction à 750 °C,
-
maximisation de la contrainte de rupture par fluage en 1 000 h à...
-
Cet article fait partie de l’offre
Étude et propriétés des métaux
(202 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Applications ou mise en œuvre
BIBLIOGRAPHIE
-
(1) - BHADESHIA (H.K.D.H.) - Neural networks in materials science. - ISIJ International, 39, p. 966-979 (1999).
-
(2) - WILLIAMS (C.K.I.), RASMUSSEN (C.E.) - Gaussian processes for regression. - Advances in Neural Information Processing Systems, 8, MIT Press (1996).
-
(3) - PEI (J.F.), CAI (C.Z.), ZHU (X.J.), WANG (G.L.) - Investigation on the processing-properties of hot deformed TA15 titanium alloy via support vector regression. - Materials Science Forum, 689, p. 134-143 (2011).
-
(4) - JHA (R.), PETTERSSON (F.), DULIKRAVICH (G.S.), SAXEN (H.), CHAKRABORTI (N.) - Evolutionary design of nickel-based superalloys using data-driven genetic algorithms and related strategies. - Materials and Manufacturing Processes, 30, p. 488-510 (2015).
-
(5) - TANCRET (F.), BHADESHIA (H.K.D.H.), MACKAY (D.J.C.) - Comparison of neural networks with Gaussian processes to model the yield strength of nickel-base superalloys. - ISIJ International, 39, p. 1020-1026 (1999).
-
...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
1.1 Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)
Matlab, logiciel de calcul scientifique (permettant notamment la fouille de données et l’optimisation) distribué par Mathwoks : https://fr.mathworks.com/products/matlab.html
Thermo-Calc, logiciel Calphad distribué par Thermo-Calc Software : https://thermocalc.com/
HAUT DE PAGE1.2 Organismes – Fédérations – Associations (liste non exhaustive)
Réseau National de la Métalurgie (RNM) : https://www.rnm-metallurgie.fr/
Société Française de Métallurgie et de Matériaux (SF2M) : https://sf2m.fr/
HAUT DE PAGE1.3 Laboratoires – Bureaux d'études – Écoles – Centres de recherche (liste non exhaustive)
Institut des Matériaux de Nantes Jean Rouxel (IMN), Nantes Université, CNRS : https://www.cnrs-imn.fr/
Laboratoire...
Cet article fait partie de l’offre
Étude et propriétés des métaux
(202 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive