Présentation
EnglishRÉSUMÉ
Les structures sandwich, de par leur capacité à allier rigidité en flexion et légèreté, sont de plus en plus utilisées. Afin de choisir la structure optimale, il est essentiel de comprendre l'influence des différents paramètres (matériaux et dimensions) sur les propriétés de service mais aussi sur les mécanismes d'endommagements. Cet article détaille un certain nombre de propriétés mécaniques qui caractérisent ce type de panneaux, ainsi que les moyens expérimentaux qui permettent de les identifier.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Pierre LHUISSIER : Chercheur CNRS au laboratoire de Science et Ingénierie des Matériaux et des Procédés Grenoble Université
-
Laurent LASZCZYK : Docteur-Ingénieur en Science et Ingénierie des Matériaux - Ingénieur R & D, Constellium
INTRODUCTION
Dans de nombreuses applications telles que l'aéronautique, le ferroviaire ou le bâtiment, le rapport entre rigidité mécanique en flexion et masse est primordial. Lorsqu'il s'agit de composants plats, la structure sandwich est une solution très pertinente. Cette structure consiste à associer deux matériaux différents :
-
un matériau de cœur, également dénommé matériau d'âme, léger et ne nécessitant que de faibles propriétés mécaniques ;
-
deux peaux, également dénommées parements ou semelles, nécessitant de bonnes propriétés mécaniques afin de contribuer à l'inertie de flexion.
L'insertion du matériau de cœur léger entre les deux parements permet une augmentation de l'épaisseur tout en limitant la prise de masse. En outre, le positionnement des parements très rigides au plus loin du plan médian permet de maximiser le moment d'inertie et donc la rigidité en flexion. Dans certains cas, des propriétés fonctionnelles sont aussi recherchées telles que l'absorption d'énergie lors de chocs. Le choix du matériau de cœur permet alors de satisfaire ce type de cahier des charges multifonctionnel, notamment par l'utilisation de matériaux architecturés (par exemple des mousses, treillis, tôles gaufrées). C'est en tenant compte de ces spécifications structurales et fonctionnelles que doit se faire dans une approche intégrée le choix des matériaux constitutifs et des paramètres géométriques.
Cet article détaille un certain nombre de propriétés mécaniques qui caractérisent ce type de panneaux, ainsi que les moyens expérimentaux qui permettent de les identifier.
Les notations et leurs définitions sont explicitées en page 18.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Étude et propriétés des métaux
(202 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Rigidité
La rigidité en flexion est la principale raison qui justifie l'utilisation de structures sandwich. Cependant, la rigidité en flexion pure n'est souvent pas suffisante pour quantifier la performance d'un panneau puisque cette sollicitation n'intervient jamais seule. Les comportements en traction dans le plan, en compression hors-plan ou en cisaillement transverse, ne doivent pas être négligés.
2.1 Modélisation
Nous cherchons dans cette section à exprimer les propriétés caractéristiques de rigidité du panneau sandwich en fonction des propriétés matériaux constitutifs des parements et du cœur. Deux catégories de propriétés sont utilisées selon le contexte : les propriétés équivalentes matériau et les propriétés macroscopiques de plaque. Elles sont substituables et facilement déduites l'une de l'autre en considérant l'épaisseur du panneau. Les propriétés équivalentes matériau se prêtent plus facilement à la comparaison et la sélection des matériaux. Les propriétés de plaque sont plus appropriées aux calculs de structure.
HAUT DE PAGE2.1.1 Propriétés équivalentes matériau
On définit les modules suivants comme ceux du matériau homogène équivalent qui donnerait la même réponse mécanique pour chaque sollicitation indépendamment (traction/compression dans le plan et normale au plan, et flexion).
La configuration sous forme de couches (i.e. invariante dans le plan) implique que les modules d'Young dans le plan et hors-plan s'expriment selon les moyennes arithmétiques et géométriques.
Module d'Young dans le plan :
Module d'Young normal au plan :
Cet article fait partie de l’offre
Étude et propriétés des métaux
(202 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Rigidité
BIBLIOGRAPHIE
-
(1) - ASHBY (M.F.) - Hybrid Materials to Expand the Boundaries of Material-Property Space - Journal of the American Ceramic Society, 94(29018) : s3-s14 (2011).
-
(2) - ALLEN (H.G.) - Analysis and design of structural sandwich panels - Pergamon (1969).
-
(3) - ASHBY (M.F.), EVANS (A.G.), FLECK (N.A.), GIBSON (L.J.), HUTCHINSON (J.W.), WADLEY (H.N.G.) - Metal Foams : A design guide - Butterworth-Heinemann (2000).
-
(4) - ZENKERT (D.), SHIPSHA (A.), PERSSON (K.) - Static indentation and unloading response of sandwich beams - Composites Part B : Engineering, 35(6-8) : 511-522 (2004).
-
(5) - ZENKERT (D.), Nordic Industrial Fund - The handbook of sandwich construction - EMAS publishing (1997).
-
(6) - ANDREWS (E.W.), MOUSSA (N.A.) - Failure mode maps for composite sandwich panels subjected to air blast loading - International...
DANS NOS BASES DOCUMENTAIRES
CES Selector 2010, Granta Design Limited, Rustat House, 62 Clifton Road, Cambridge CB1 7EG, United Kingdom
HAUT DE PAGE
ASTM C393 (2006), Test Method for Core Shear Properties of Sandwich Constructions by Beam Flexure.
ASTM D7250 (2006), Practice for Determining Sandwich Beam Flexural and Shear Stiffness.
HAUT DE PAGECet article fait partie de l’offre
Étude et propriétés des métaux
(202 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive