Présentation

Article

1 - MEMBRANES DE FILTRATION POUR DES SÉPARATIONS EN PHASE LIQUIDE

2 - POLYMÈRES CONVENTIONNELS POUR LA FABRICATION DE MEMBRANES

3 - MEMBRANES EN POLYMÈRES BIOSOURCÉS OU BIODÉGRADABLES

4 - VERS UNE FABRICATION DES MEMBRANES PLUS DURABLE ET SÛRE

5 - CONCLUSION

6 - GLOSSAIRE

Article de référence | Réf : N500 v1

Glossaire
Fabrication durable de membranes : apport des polymères biosourcés et/ou biodégradables

Auteur(s) : Patrick LOULERGUE, Jean-Luc AUDIC, Lydie PAUGAM, Anthony SZYMCZYK

Date de publication : 10 août 2023

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Une transition vers une production plus durable est un enjeu sociétal majeur quel que soit le secteur industriel. Le domaine de la fabrication des membranes utilisés dans les procédés de séparation ne fait pas exception. Cet article traite de la substitution des polymères conventionnels pétrosourcés et non biodégradables par les polymères biosourcés et/ou biodégradables pour la fabrication de membranes. Les différentes familles de polymères biosourcés et/ou biodégradables sont présentées succinctement, leur utilisation et leurs avantages et inconvénients discutés au regard de cette application. Enfin, les efforts restant à accomplir pour tendre vers une fabrication industrielle de membranes plus durable et sûre sont abordés.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Patrick LOULERGUE : Maître de conférences - Université de Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR 6226, 35000 Rennes, France

  • Jean-Luc AUDIC : Maître de Conférences - Université de Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR 6226, 35000 Rennes, France

  • Lydie PAUGAM : Maître de conférences - Université de Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR 6226, 35000 Rennes, France

  • Anthony SZYMCZYK : Professeur des universités - Université de Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR 6226, 35000 Rennes, France

INTRODUCTION

Les étapes de séparation dans les procédés industriels représentent 10 à 15 % de la consommation mondiale d'énergie et 60 à 80 % des coûts des procédés industriels chimiques et biotechnologiques . Il est donc de la plus haute importance de développer des procédés de séparation plus efficaces en termes d'énergie et de coûts.

Les procédés membranaires sont apparus comme des solutions prometteuses pour l'intensification des procédés, et ils ont déjà démontré leur capacité à effectuer des séparations plus propres, et plus efficaces sur le plan énergétique, que les technologies conventionnelles (distillation ou évaporation par exemple). Ces technologies se sont ainsi imposées dans le domaine du traitement de l’eau (potabilisation, traitement des eaux usées ou encore dessalement de l’eau de mer), dans les secteurs médical (dialyse rénale) et biopharmaceutique (production de vaccins), ou encore dans le domaine de l’agroalimentaire (industrie laitière en particulier).

Le terme « procédé membranaire » regroupe l’intégralité des techniques de séparation fondées sur l’utilisation d’une « membrane ». Celle-ci peut être définie comme une fine couche de matériau (généralement un polymère), semi-perméable ou sélectivement perméable, capable de séparer différents composés en fonction de leurs propriétés chimiques et/ou physiques sous l’action d’une force motrice.

Bien qu’étant considérées comme durables, la quasi-totalité de ces techniques requièrent l’utilisation de membranes produites à partir de polymères pétrosourcés et non biodégradables. Dans un contexte de transition vers l’utilisation de ressources renouvelables et de volonté d’une meilleure gestion de la fin de vie des matériaux, de nombreuses initiatives apparaissent afin de proposer un remplacement à ces polymères pour la fabrication de membranes.

L’objectif de cet article est de dresser le panorama des différents polymères biosourcés ou biodégradables pouvant être utilisés pour la fabrication de membranes pour des séparations en phase liquide. Après une brève introduction aux procédés membranaires et à la fabrication de membranes, les différentes familles de polymères pouvant être utilisées seront présentées au regard de leurs applications pour la fabrication de membranes. Leurs avantages et inconvénients seront mis en évidence et discutés en lien avec ces applications. Le potentiel et les limitations pour la mise en œuvre de ces polymères biosourcés ou biodégradables dans la fabrication de membranes à l’échelle industrielle seront en particulier commentés lorsque cela est possible. Enfin, dans une dernière section, les principaux efforts restant à réaliser dans le but d’une fabrication plus durable de membranes seront discutés.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-n500


Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(206 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

6. Glossaire

Colmatage ; fouling

Chute des performances de séparation liée à l’accumulation de matière à la surface et dans les pores de la membrane.

Membrane ; membrane

Structure ayant des dimensions latérales très supérieures à son épaisseur et à travers laquelle un transfert de matière peut avoir lieu sous l’action de forces motrices de différentes natures.

Polymère biosourcé ; biobased polymer

Polymère, intégralement ou en partie, produit à partir de ressources renouvelables.

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(206 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Glossaire
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - SHOLL (D.S.), LIVELY (R.P.) -   Seven chemical separations to change the world.  -  In : Nature News, 532, p. 435 (1001002016). 10.1038/532435a

  • (2) - RAGAUSKAS (A.J.), WILLIAMS (C.K.), -DAVISON (B.H.), BRITOVSEK (G.), CAIRNEY (J.), ECKERT (C.A.), FREDERICK (W.J.) et al -   The Path Forward for Biofuels and Biomaterials.  -  In : Science, American Association for the Advancement of Science, 311, p. 484‑489 (2006). 10.1126/science.1114736

  • (3) - KOROS (W.J.), MA (Y.H.), SHIMIDZU (T.) -   Terminology for membranes and membrane processes (IUPAC Recommendations 1996).  -  In : Pure and Applied Chemistry, 68, p. 1479‑1489 (1996). 10.1351/pac199668071479

  • (4) - CRESPO (J.G.), BRAZINHA (C.) -   Fundamentals of pervaporation.  -  In : Pervaporation, Vapour Permeation and Membrane Distillation, Woodhead Publishing Series in Energy, Woodhead Publishing, p. 3‑17 (2015). https://doi.org/10.1016/B978-1-78242-246-4.00001-5

  • (5) - HENNESSY (J.) -   Membranes from academia to industry.  -  In : Nature Materials, Nature...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(206 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS