Présentation
En anglaisRÉSUMÉ
Les protéines de soie appartiennent à la classe des protéines de haut poids moléculaire utilisées dans les domaines des biomatériaux et de la médecine régénérative. Ces protéines se caractérisent par d’excellentes propriétés mécaniques, elles sont biocompatibles et biodégradables. Ces propriétés attractives peuvent de plus être améliorées par diverses modifications chimiques, qui permettent ainsi l’attachement de facteurs de croissance, domaine d’adhésion cellulaire ou d’autres molécules d’intérêt, à la soie. Associées à la technique d’électrospinning, qui permet de produire des nanofibres, les propriétés des protéines de soie peuvent mener à de nombreuses applications dans le domaine biomédical.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Silk proteins belong to a class of unique, high molecular weight proteins that have found widespread use in biomaterials and regenerative medicine. These protein characteristics are robust mechanical properties, biocompatibility and biodegradability, which can be enhanced with a variety of chemical modifications. These modifications provide tools for the attachment of growth factors, cell binding domains and other molecules of interest to silk. Coupled to the electrospinning technique, allowing producing silk nanofibers, these useful properties of silk leads to a wide range of biomedical applications attainable.
Auteur(s)
-
Guillaume VIDAL : Docteur en biologie - Chercheur contractuel au laboratoire de biomécanique et bioingénierie (UMR 7338), Université de technologie de Compiègne
-
Tony DINIS : Ingénieur, doctorant au laboratoire de biomécanique et bioingénierie (UMR 7338), Université de technologie de Compiègne et au Biomedical Engineering department, Tufts University, MA, USA
-
Christophe EGLES : Colecteur - Docteur en neurobiologie, laboratoire de biomécanique et bioingénierie (UMR 7338) - Professeur à l'Université de technologie de Compiègne, Visiting Professor, Tufts University, School of Dental Medicine, USA
INTRODUCTION
Les protéines de soie, comme la fibroïne, sont des protéines naturelles extraites des cocons du ver à soie, cocons qui sont cultivés et utilisés depuis plusieurs centaines d'années pour la fabrication du textile de soie. La production mondiale de ces cocons est de l'ordre de 400 000 tonnes par an, essentiellement destinée à l'industrie textile et, depuis quelques années, aux applications biomédicales.
En effet, cette soie peut générer de nouvelles matières innovantes qui pourraient, à l'instar du collagène, être utilisée dans le milieu biomédical. C'est pourquoi, depuis ces vingt dernières années, de nombreuses équipes de recherche s'intéressent de près à ces protéines qui sont essentiellement constituées de biopolymères. Par ailleurs, elles fournissent des propriétés mécaniques intéressantes et présentent une absence totale de toxicité. Aussi, cette soie peut être facilement biofonctionnalisée par le biais de modifications chimiques qui permettent alors d'obtenir de nouvelles propriétés physico-chimiques. Couplées à la variété de structures possibles (gel, capsules, films et fibres), ces modulations de la chimie de la protéine élargissent encore les possibilités d'applications des biomatériaux à base de soie.
Le choix des caractéristiques physico-chimiques du biomatériau sera donc fonction de son application. Les nanofibres de protéines de soie permettent, elles, de créer de nouvelles matrices pour l'ingénierie tissulaire ou de nouveaux types de vecteurs pour la libération de médicaments-molécules actifs.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Sciences fondamentales > Nanosciences et nanotechnologies > Nanotechnologies pour l'énergie, l'environnement et la santé > Biomatériaux à base de nanofibres de soie pour des applications biomédicales > Nanofibres de soie
Accueil > Ressources documentaires > Biomédical - Pharma > Technologies pour la santé > Nanotechnologies et biotechnologies pour la santé > Biomatériaux à base de nanofibres de soie pour des applications biomédicales > Nanofibres de soie
Accueil > Ressources documentaires > Biomédical - Pharma > Technologies pour la santé > Biomatériaux > Biomatériaux à base de nanofibres de soie pour des applications biomédicales > Nanofibres de soie
Accueil > Ressources documentaires > Innovation > Éco-conception et innovation responsable > Conception durable inspirée du vivant : le biomimétisme > Biomatériaux à base de nanofibres de soie pour des applications biomédicales > Nanofibres de soie
Accueil > Ressources documentaires > Matériaux > Matériaux fonctionnels - Matériaux biosourcés > Matériaux pour la santé et l'agroalimentaire > Biomatériaux à base de nanofibres de soie pour des applications biomédicales > Nanofibres de soie
Accueil > Ressources documentaires > Innovation > Nanosciences et nanotechnologies > Nanotechnologies pour l'énergie, l'environnement et la santé > Biomatériaux à base de nanofibres de soie pour des applications biomédicales > Nanofibres de soie
Cet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(205 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Nanofibres de soie
Il est aujourd'hui facile d'obtenir et de purifier de façon peu coûteuse la protéine de soie à partir des cultures de Bombyx mori. La fibroïne issue de ces vers à soie est ainsi davantage utilisée dans les applications biomédicales que la soie naturelle d'araignée et les protéines obtenues par biotechnologie.
3.1 Extraction et purification de la fibroïne
Il existe plusieurs méthodes d'extraction de la fibroïne, néanmoins, la technique la plus couramment utilisée est la dialyse. Les cocons de Bombyx mori sont bouillis pendant 30 minutes dans une solution saline de carbonate de sodium (Na2CO3) à 0,02 mol/L. Le réseau fibrique obtenu est par la suite rincé trois fois dans l'eau pour extraire une partie de la séricine. Cependant, afin d'extraire complètement cette protéine immunogène, les fibres de soie obtenues sont dissoutes dans une solution aqueuse de bromure de lithium (9,3 mol/L) à 60 oC, puis dialysées pendant 72 heures (figure 5). La concentration finale en fibroïne obtenue est de l'ordre de 7 à 8 % .
HAUT DE PAGE3.2 Technique de fabrication des nanofibres de soie
Le spinning, ou filage, est un art textile antique dans lequel des fibres végétales, animales ou synthétiques sont torsadés ensemble pour former un fil.
Le filage de polymère s'appuie sur le même principe et ne peut se faire qu'à partir d'une solution liquide. Les protéines de soie sont dissoutes en solution (aqueuse ou non). La concentration en protéines aura une influence directe sur le diamètre de la fibre obtenue, tout comme la technique de filage utilisée. En effet, les microfibres (de 2 à 100 μm) sont élaborées grâce aux techniques ci-après.
-
Wet spinning (1949, Howard). Cette technique est la plus ancienne. Elle est essentiellement utilisée dans la formation de fibres où les polymères sont dissous dans un solvant....
Cet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(205 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Nanofibres de soie
BIBLIOGRAPHIE
-
(1) - ROBSON (R.M.) - Silk composition, structure and properties. - Hand book of fibre Science and Technology (1985).
-
(2) - MITA (K.) et al - Highly repetitive structure and its organization of the silk fibroin gene. - J. Mol. Evol. (1994).
-
(3) - SASHINA (E.S.) et al - Structure and solubility of natural Silk fibroin. - Russian Journal of applied chemistry (2006).
-
(4) - GULRAJANI (M.L.) - Degumming of silk in : Silk dyeing printing and finishing. - India Institute of Technology, Hauz Khas, New Delhi (1988).
-
(5) - ALTMAN (G.H.) - Macrophage responses to silk. - Biomaterials (2003).
-
(6) - WANG (Y.) - In vivo degradation of three-dimensional silk fibroin scaffolds. - Biomaterials (2008).
-
...
ANNEXES
Patent application number : 20100196447
Patent application title : SILK BIOMATERIALS AND METHODS OF USE THEREOF
HAUT DE PAGECet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(205 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive