Présentation

Article

1 - ÉTUDE ÉLECTROMAGNÉTIQUE DES SUPRACONDUCTEURS, MODÈLE DE L’ÉTAT CRITIQUE

2 - AIMANTATION D’UN SUPRACONDUCTEUR AVEC DENSITÉ DE COURANT CRITIQUE

3 - STABILISATION DE L’ÉTAT SUPRACONDUCTEUR

4 - PERTES ALTERNATIVES (PERTES AC)

5 - TRANSITION ET PROTECTION

Article de référence | Réf : D2702 v1

Aimantation d’un supraconducteur avec densité de courant critique
Supraconducteurs - Structure et comportement des fils

Auteur(s) : Pascal TIXADOR, Yves BRUNET

Date de publication : 10 févr. 2004

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Le matériau supraconducteur a la propriété, dans des conditions données de température et de densité de courant, de transporter du courant sans dissipation énergétique. Cet article s'intéresse au supraconducteur avec une structure multifilamentaire torsadée, qui stabilisé l'état supraconducteur et offre un fonctionnement sûr et satisfaisant.  Il explique l'origine des pertes en courant alternatif, puis aborde la transition et la protection du fil supraconducteur dans un dispositif supraconducteur.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Pascal TIXADOR : Directeur de recherche au CNRS - Laboratoire d’électrotechnique de Grenoble (LEG) - Centre de recherche sur les très basses températures (CRTBT)

  • Yves BRUNET : Professeur à l’Institut national polytechnique de Grenoble (INPG) - Laboratoire d’électrotechnique de Grenoble (LEG) - Centre de recherche sur les très basses températures (CRTBT)

INTRODUCTION

Un supraconducteur est le matériau a priori idéal pour l’électrotechnicien puisqu’il transporte des densités de courant élevées sans être dissipatif du tout, du moins quand son environnement électromagnétique reste constant dans le temps. Cet état non dissipatif est cependant limité par trois grandeurs : la température critique (Tc ), la densité de courant critique (Jc ) et le champ d’irréversibilité (H*). Ces trois grandeurs forment une surface, dite critique, dans l’espace, température, densité de courant et champ magnétique. Elle peut être modifiée par les contraintes mécaniques pour certains supraconducteurs. La limite thermique est la plus contraignante pour l’utilisateur, du moins pour les supraconducteurs à basse température critique qui restent de très loin les matériaux les plus utilisés. Ainsi ce document traite essentiellement de la structure multifilamentaire des fils supraconducteurs « bas Tc ». Les supraconducteurs à haute température critique sont cependant souvent évoqués. L’élévation de la température de fonctionnement et les conséquences sur les grandeurs caractéristiques sont analysées.

Dans ce document, le supraconducteur est considéré macroscopiquement avec un modèle simple mais représentatif : le modèle de l’état critique et sa version simplifiée, le modèle de Bean, la physique ayant été abordée dans l’article Supraconducteurs. Bases théoriques Supraconducteurs- Bases théoriques.

Après avoir présenté ce modèle, nous l’appliquerons à l’aimantation d’un supraconducteur, une de ses caractéristiques fondamentales. Nous expliquons par la suite comment la structure multifilamentaire torsadée stabilise l’état supraconducteur et permet un fonctionnement sûr et satisfaisant, compte‐tenu des spécificités des supraconducteurs et des propriétés des matériaux aux basses températures. Les pertes en courant alternatif (ac) sont abordées avant de conclure par la transition et la protection du fil supraconducteur dans un dispositif supraconducteur.

Nota :

Cette série est complétée par l’article : Supraconducteurs. Environnement et applications Supraconducteurs- Environnement et applications.

Pour en savoir plus, le lecteur pourra consulter les ouvrages .

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-d2702


Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(204 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

2. Aimantation d’un supraconducteur avec densité de courant critique

2.1 Courbe expérimentale

Des défauts microscopiques modifient profondément la courbe d’aimantation par rapport à la courbe réversible d’un échantillon supraconducteur sans défaut (Jc = 0 ; cf. figure 1). Ces défauts créent, pour les vortex, des centres d’ancrage, origine d’une densité de courant critique. La figure 3 illustre ce profond changement en montrant les courbes expérimentales d’aimantation d’un même échantillon supraconducteur pratiquement sans défaut (non irradié) et avec des défauts obtenus en irradiant le matériau. Pour l’échantillon sans défaut, la courbe d’aimantation est très proche de la courbe théorique idéale de la figure 1. Il existe cependant une légère hystérésis car il est impossible d’élaborer un matériau sans aucun défaut.

L’introduction de défauts dans le matériau modifie la courbe d’aimantation :

  • au‐delà de H c1, l’échantillon reste diamagnétique jusqu’à H c2 qui détruit la supraconductivité et annule donc l’aimantation. Le diamagnétisme au‐delà de H c1 et jusqu’à H c2 est dû au développement de courants induits dans le matériau. Ces courants sont régis par la loi de Lenz classique. Ils s’opposent aux variations d’induction extérieure et n’écrantent donc pas systématiquement et parfaitement l’induction extérieure comme les courants supraconducteurs de London. La répartition spatiale des courants induits est donnée par le modèle de l’état critique, soit zéro, ou la densité de courant critique. Enfin ces courants induits ne s’amortissent pas puisqu’ils circulent sans développer de champ électrique (résistivité nulle) tant que le matériau est supraconducteur ;

  • lorsque le champ extérieur diminue à partir...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(204 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Aimantation d’un supraconducteur avec densité de courant critique
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BEAN (C.P.) -   Magnetization of high field superconductors  -  . Reviews of modern physics, p. 31-39, janv. 1964.

  • (2) - STAVREV (S.), GRILLI (F.), DUTOIT (B.), NIBBIO (N.), VINOT (E.), KLUTSCH (I.), MEUNIER (G.), TIXADOR (P.), YANG (Y.), MARTINEZ (E.) -   Comparison of Numerical Methods for Modelling of superconductors  -  . IEEE Transactions on Magnetics, p. 849-852 (2002).

  • (3) - CLAUDET (G.), LACAZE (A.), ROUBEAU (P.), VERDIER (J.) -   The design and operation of a refrigerator system using superfluid helium  -  . Proceeding of the fifth International Cryogenic Engineering Conference, p. 265-267 (1974).

  • (4) - STEKLY (Z.J.J.), ZAR (J.L.) -   Stable superconducting coils  -  . IEEE Transactions on Nuclear Science, vol. 12, p. 367-372 (1967).

  • (5) - MADDOCK (B.J.), JAMES (G.B.), NORRIS (W.T.) -   Superconducting composites : heat transfer and steady state stabilization.  -  Cryogenics, vol. 9, p. 261-273 (1969).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(204 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS