Présentation

Article

1 - PROPRIÉTÉS PHYSIQUES DES MATÉRIAUX III-N

2 - HÉTÉROÉPITAXIE DES MATÉRIAUX III-N

3 - ASPECTS ENVIRONNEMENTAUX

4 - CONCLUSION

5 - GLOSSAIRE

6 - SIGLES, NOTATIONS ET SYMBOLES

Article de référence | Réf : E1995 v3

Conclusion
Dispositifs HEMT à base de GaN - Matériaux et épitaxie

Auteur(s) : Jean-Claude DE JAEGER

Date de publication : 10 mars 2024

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Dans le domaine de la microélectronique de puissance hyperfréquence, le matériau à grand gap GaN constitue une alternative intéressante grâce à ses propriétés physiques. Il permet de fabriquer des composants de type diode GaN et High Electron Mobility Transistors (HEMT) fonctionnant à haute fréquence grâce à de bonnes propriétés de transport électronique et une tension de claquage élevée. Cet article décrit les spécificités du semiconducteur et des hétérostructures associées, notamment les polarisations spontanée et piézoélectrique ainsi que les différentes structures développées et les méthodes de croissance utilisées, épitaxie en phase vapeur aux organométalliques ou sous jets moléculaires, et les problèmes liés au substrat d’accueil (principalement SiC ou Si).

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Jean-Claude DE JAEGER : Professeur émérite à l’Université de Lille, France - Groupe Composants et Dispositifs Micro-ondes de Puissance à l’Institut d’Électronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Villeneuve-d’Ascq, France

INTRODUCTION

Le monde des semiconducteurs est dominé, en termes de marché, par le silicium. Cependant, il existe d’autres semiconducteurs, tels que le germanium, mais surtout les semiconducteurs III-V, qui permettent d’obtenir de meilleures performances dans des domaines spécifiques d’applications. Les principaux sont le GaAs et l’InP, et plus récemment les semiconducteurs dit « grand gap » tel que le SiC et le GaN, avec des gaps respectifs de 3,2 eV et 3,4 eV. Ces semiconducteurs permettent de réaliser des composants qui allient tension de claquage et courant élevés, ce qui les destine aux applications de puissance.

Cet article, consacré au GaN, décrit les aspects matériaux et les techniques d’épitaxie pour réaliser ces composants, dont les principales applications concernent l'électronique hyperfréquence, et l’électronique de puissance. On peut fabriquer des composants à haute mobilité électronique (HEMTs), ou des circuits intégrés millimétriques monolithiques de type MMIC, fonctionnant jusqu’à 110 GHz, pour des applications en télécommunications, ou militaires, ainsi que des transistors alliant haute tension et fort courant, pour la conception de convertisseurs commutant à haute fréquence.

Le GaN présente beaucoup d'avantages, car il permet d’associer des semiconducteurs ternaires tels que AIGaN, AlInN et ScAlN, et quaternaire, AIGaInN, ce qui autorise la conception de dispositifs à hétérojonctions comme le transistor HEMT. Dans cette structure, un gaz bidimensionnel (2D) d’électrons est créé à l'interface de l’hétérojonction, à l’origine de densités de porteurs élevées caractérisées par une bonne mobilité.

Parmi les semiconducteurs III-V, les matériaux III-N ayant une structure cristalline de type wurtzite, tels que GaN, AIN et InN, présentent à la fois une polarisation spontanée et une polarisation piézoélectrique. Ces polarisations sont à l’origine du gaz 2D au niveau de l’hétérojonction entre la zone de barrière en AlGaN, AlInN, AIGaInN, AlN ou ScAlN, et la zone active en GaN, sans nécessiter de dopage de cette zone de barrière.

Pour les applications de puissance, la filière GaN présente d'autres avantages, tels que la tenue à de hautes températures, et la possibilité de fonctionner en environnement hostile. Cependant, une limitation est due à la faible disponibilité de substrats GaN semi-isolant. Aussi, d’autres types de substrat d’accueil tels que, en particulier, SiC et Si, sont-ils couramment utilisés. Le premier permet d'obtenir les meilleures performances, grâce à un faible désaccord de maille avec le GaN. Le second est plus disponible en grande taille, et peu coûteux.

L'épitaxie réalisée par MOCVD ou par MBE comprend :

  • une couche de nucléation déposée sur le substrat, afin d’assurer un bon accord de maille avec le GaN ;

  • une couche de GaN constituant la couche tampon (buffer) et la zone active ;

  • une fine zone en AIN, qui permet d’améliorer les propriétés de transport dans le canal ;

  • une zone de barrière en AIGaN, AlInN, AlGaInN, AIN ou ScAlN ;

  • une couche de surface (cap) en GaN ou SiN.

Une limitation des HEMTs de la filière GaN est la densité de défauts due au désaccord de maille, qui entraîne la naissance de pièges pouvant limiter les performances.

La fabrication de substrats et d'épitaxies de la filière nitrure de gallium est assurée par de nombreux industriels américains (Cree, Macom), asiatiques (Fujitsu, Mitsubishi Electric, Toshiba) et européens (Ammono, Iqe, Saint Gobain-Lumilog, Sicrystal, Soitec Belgium), ce qui permet de fournir des épitaxies sur substrats Si, SiC et GaN. Le marché militaire utilise uniquement des épitaxies sur substrat SiC, qui offrent les meilleures performances en RF, mais on s'intéresse aussi aux épitaxies sur substrat Si, dans le domaine des télécommunications, pour des applications, notamment, de liaisons point à point ou multipoints, à cause de leur coût plus faible.

En ce qui concerne l’électronique de puissance, le faible coût est un des critères les plus importants. Aussi les épitaxies sur substrat Si présentent-elles un grand intérêt dans un marché où la demande potentielle est importante pour les applications dans les systèmes embarqués, grâce à la miniaturisation des convertisseurs.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v3-e1995


Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(206 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

4. Conclusion

Parmi les semiconducteurs III-V, la filière nitrure de gallium a connu son essor au cours des années 1990. Avec les améliorations de la qualité du matériau au niveau de la croissance, et celle de la qualité cristalline, elle est parfaitement adaptée à la réalisation de dispositifs de puissance nécessitant des tensions de fonctionnement élevées, grâce au champ de claquage important lié au grand gap. La discontinuité importante de la bande de conduction au niveau de l’hétérojonction AlGaN/GaN, AlInN/GaN, AlN/GaN ou ScAlN/GaN, ainsi que la vitesse de saturation élevée des électrons dans ces matériaux, constituent également des atouts pour la puissance, grâce aux forts courants associés.

La spécificité de ces matériaux est la présence de polarisations spontanée et piézoélectrique élevées, qui rendent inutile le dopage de la zone de barrière. Les substrats les plus utilisés sont le SiC, grâce à son faible désaccord de maille avec le GaN et à son excellente conductivité thermique, ainsi que le Si, hautement résistif, et disponible en plus grande surface et avec un plus faible coût. Le substrat GaN, apparu plus tardivement présente quant à lui la possibilité d’homoépitaxie, gage d’une faible densité de dislocations. La fabrication et le coût de substrats semi-isolants restent toutefois des freins.

La dissipation thermique est aussi un paramètre important pour les applications de puissance. Aussi les techniques de report présentent-elles un grand intérêt, si on sait éviter la barrière thermique à l’interface. Le report d’une épitaxie réalisée sur un substrat diamant polycristallin peut constituer une voie prometteuse permettant d’allier une bonne dissipation thermique, grâce au diamant, et une amélioration de la fiabilité. Il est à noter qu’il existe différentes associations de composants grand gap permettant d’obtenir des performances de plus en plus intéressantes.

Enfin, les deux techniques d’épitaxie sont la MBE et la MOCVD, cette dernière étant plus largement utilisée au niveau industriel, sur substrats SiC ou Si. Il est important de noter que le marché des semiconducteurs à base de GaN est en pleine expansion. Outre les applications en optoélectronique, la filière a tendance à suppléer les autres semiconducteurs pour les applications de puissance hyperfréquence jusqu’à 110 GHz. Quant au marché lié à...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(206 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusion
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - WRIGHT (A.F.), NELSON (J.S.) -   Consistent structural properties for AlN, GaN, and InN.  -  Phys. Rev. B, 51(12), pp. 7866-7869 (1995).

  • (2) - FOUTZ (B.E.), O’LEARY (S.K.), SHUR (M.S.), EASTMAN (L.F.) -   Transient electron transport in wurtziteGaN, InN, and AlN.  -  J. Appl. Phys., 85(11), pp. 7727-7734 (1999).

  • (3) - BERNARDINI (F.), FIORENTINI (V.), VANDERBILT (D.) -   Spontaneous polarization and piezoelectric constants of III-V nitrides.  -  Phys. Rev. B, 56(16), pp. R10024-R10027 (1997).

  • (4) - AMBACHER (O.), MAJEWSKI (J.), MISKYS (C.), LINK (A.), HERMANN (M.), EICKHOFF (M.), STUTZMANN (M.), BERNARDINI (F.), FIORENTINI (V.), TILAK (V.), SCHAFF (B.), EASTMAN (L.F.) -   Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures.  -  J. Phys. Condens. Matter, 14(13), p. 3399 (2002).

  • (5) - TASLI (P.), LISESIVDIN (S.B.), YILDIZ (A.), KASAP (M.), ARSLAN (E.), ÖZCELIK (S.), OZBAY (E.) -   Well parameters of two-dimensional electron gas in Al0.88In0.12N/AlN/GaN/AlNheterostructures grown by...

DANS NOS BASES DOCUMENTAIRES

1 Outils logiciels

COMSOL Multiphysics, [Logiciel] COMSOL GmbH Technoparkstrasse 1, 8005 Zürich, Suisse

HAUT DE PAGE

2 Événements

International Conférence on Molecular Beam Epitaxy (ICMBE) – la dernière (22e) a eu lieu à Sheffield, UL en septembre 2022.

International Conférence on Vapor Phase Epitaxy (ICVPE) – la prochaine (21e) aura lieu à Las Vegas, Nevada en mai 2024.

International Conference on Nitride semiconductors (ICNS) – la dernière (14e) aura lieu à Fukuoka, Japon en novembre 2023.

International Workshop on Nitride Semicoductors (IWN) – le dernier a eu lieu à Berlin, Allemagne, en octobre 2022.

European Workshop on Molecular Beam Epitaxy (EuroMBE) – le dernier a eu lieu à Madrid, Espagne en avril 2023.

Compound Semiconductor Week (CSW) – la dernière a eu lieu à Jeju, Corée en mai-juin 2023.

HAUT DE PAGE

...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(206 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS