Présentation
EnglishRÉSUMÉ
Cet article traite de la modélisation numérique du comportement de matériaux cristallins. Après une description des modèles de simulations à l’échelle atomique et des applications à l’étude de la déformation plastique des métaux, l’article aborde les modèles numériques du comportement collectif de populations de dislocations pour lesquels les entités simulées sont les lignes de défauts. Puis, deux modèles d'étude du comportement du monocristal sont présentés. Le premier utilise les densités de dislocations sur les systèmes de glissement, tandis que le deuxième est purement phénoménologique et permet de traiter des chargements complexes.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Marc FIVEL : Agrégé de mécanique de l’École normale supérieure de Cachan - Docteur en mécanique - Chargé de recherches au CNRS - Institut national polytechnique de Grenoble
-
Samuel FOREST : Ingénieur civil de l’École des mines de Paris - Docteur en sciences et génie des matériaux - Chargé de recherches au CNRS - École nationale supérieure des mines de Paris
INTRODUCTION
Les matériaux cristallins sont par nature hétérogènes. On distingue, par exemple, les polycristaux constitués d’agglomérats de grains monocristallins dans lesquels des lignes de défauts, les dislocations, propagent des cisaillements sur des plans cristallographiques. Cette hétérogénéité spatiale conduit à développer des modélisations différentes à chacune des échelles impliquées. L’avénement d’une puissance informatique toujours plus performante (on peut actuellement compter sur une vitesse des microprocesseurs doublée tous les dix-huit mois) a stimulé le développement d’outils numériques sophistiqués dédiés à la simulation du comportement mécanique des matériaux. À chaque échelle d’étude, un effort important a été porté sur la mise en place de modèles fiables adaptés aux diverses situations rencontrées lors des procédés de mise en forme et des conditions en service des composants industriels (figure 1). Petit à petit, chaque modèle devient de plus en plus performant : le volume qu’il est possible de simuler ainsi que le temps physique sont toujours plus importants. On constate désormais un recouvrement entre les capacités des différents modèles à simuler la réponse de volumes de taille fixée pendant un temps physique donné.
Même s’il est encore utopique de penser simuler le processus de mise en forme par emboutissage à partir de simulations atomiques ou même à partir de la dynamique des dislocations, on constate tout de même que l’on peut, d’ores et déjà, « remonter » les échelles d’espace et de temps de manière continue, par exemple en réalisant des simulations spécifiques dont les résultats serviront à asseoir un modèle à l’échelle supérieure. On observe également que, à l’échelle des milieux continus, les lois de comportement phénoménologiques laissent peu à peu la place à des relations de comportement déduites des mécanismes physiques à l’origine de la déformation plastique tels que les mouvements de dislocations. Cette transition d’échelle entre la dynamique d’une ligne de dislocation et le comportement d’un milieu continu pour lequel les variables internes sont généralement les densités de dislocations sur les différents systèmes de glissement implique une moyenne et donc une statistique sur tous les événements potentiels ainsi qu’une homogénéisation sur un volume arbitraire. Cela conduit finalement à des relations de comportement toujours plus ou moins phénoménologiques. Il en est de même pour les techniques d’homogénéisation modélisant le passage du monocristal au polycristal.
Le présent article est consacré à la modélisation numérique du comportement de matériaux cristallins, principalement métalliques, à différentes échelles à l’aide d’outils numériques spécifiquement adaptés en insistant sur les applications potentielles de ces outils, leurs capacités à reproduire la déformation plastique des cristaux mais également leurs limitations intrinsèques. Après une description des modèles de simulations à l’échelle atomique, comme la dynamique moléculaire, et des applications concernant l’étude de la déformation plastique des métaux, l’article aborde les modèles numériques du comportement collectif de populations de dislocations pour lesquels les entités simulées sont les lignes de défauts. Puis, le comportement du monocristal est décrit en présentant deux modèles : le premier utilise comme variables internes les densités de dislocations sur les systèmes de glissement tandis que le deuxième est purement phénoménologique mais remarquablement bien adapté pour traiter des chargements complexes.
Dans un second article , nous traiterons le cas du polycristal.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Étude et propriétés des métaux
(202 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Simulation du monocristal : lois de comportement à variables internes
3.1 Densités de dislocations : les bonnes variables internes ?
Considérons un élément de volume monocristallin V contenant un grand nombre de dislocations. Dans le cadre de la mécanique des milieux continus, on souhaite suivre l’évolution de cette microstructure au cours de la déformation au travers de grandeurs moyennes. Si et b ( x ) désignent respectivement les vecteurs ligne et de Burgers au point x dans V, on peut définir une première grandeur :
où les crochets désignent une moyenne d’ensemble au point x de V, c’est‐à‐dire une moyenne sur plusieurs réalisations de V, dans le cadre d’une approche statistique [20]. Ce tenseur densité de dislocations permet de calculer le défaut de fermeture macroscopique le long d’un circuit délimitant une surface S contenue dans V comme indiqué figure 10 a :
Cet article fait partie de l’offre
Étude et propriétés des métaux
(202 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Simulation du monocristal : lois de comportement à variables internes
BIBLIOGRAPHIE
-
(1) - CHANTRENNE (P.), VOLZ (S.) - Thermique à l’échelle submicronique. Introduction à la dynamique moléculaire. - Techniques de l’Ingénieur, traité Génie énergétique, BE 8 290, p. 1-20 (2002).
-
(2) - DAW (M.S.), FOILES (S.M.), BASKES (M.I.) - The embedded-atom method : a review of theory and applications. - Materials Science Report, 9, p. 251-310 (1993).
-
(3) - ABRAHAM (F.) - The embedded-atom method : a review of theory and applications. - Materials Science Report, 9, p. 251-310 (2002).
-
(4) - TADMOR (E.B.), ORTIZ (M.), PHILLIPS (R.) - Quasicontinuum analysis of defects in solids. - Philosophical Magazine, A73, p. 1529-1563 (1996).
-
(5) - SHENOY (V.B.), MILLER (R.), TADMOR (E.B.), RODNEY (D.), PHILLIPS (R.), ORTIZ (M.) - An adaptative finite element approach to atomistic-scale mechanics - the quasicontinuum method. - Journal of the Mechanics and Physics of Solids, 47, p. 611-642 (1999).
-
...
Cet article fait partie de l’offre
Étude et propriétés des métaux
(202 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive