Présentation
Auteur(s)
-
Pierre GUIRALDENQ : Professeur des universités à l’École Centrale de Lyon (ECL) et au Conservatoire National des Arts et Métiers (Centre Associé de Lyon) - Directeur de Recherches à l’ECL
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
La diffusion dans les métaux constitue un chapitre important de la Métallurgie-Physique : elle est la base même des phénomènes macroscopiques observés au terme d’un traitement thermique pour améliorer les propriétés de volume ou de surface (par un traitement de surface) et, d’une façon générale, elle contrôle l’évolution d’un matériau dès qu’interviennent le temps et la température.
La diffusion a été observée au départ sur des cas simples pour comprendre les mécanismes au niveau du réseau cristallin et pour déterminer les paramètres physiques qui la caractérisent (coefficients de diffusion, énergies d’activation, facteurs de fréquence).
Aujourd’hui, les valeurs numériques propres à de nombreux systèmes (métal pur, impuretés dans un métal pur, alliages binaires, alliages ternaires, etc.) permettent de comprendre les applications possibles et existantes de ces recherches dans des domaines tels que le frittage, les traitements de surface, le soudage, la corrosion : connaissant les constantes de diffusion, on peut prévoir déjà dans des cas simples (carburation des aciers par exemple) les temps et les températures de traitement thermique.
Toutefois, en pratique, les paramètres mis en jeu sont souvent multiples : par exemple, dans une opération de soudage, pour prévoir la diffusion, il faudrait tenir compte à la fois du gradient de température, du champ électrique, des affinités chimiques, des mouvements du métal liquide. Aussi, cet article a donc pour but de séparer l’analyse des différents paramètres afin de mieux saisir leur importance dans les phénomènes de transport.
VERSIONS
- Version archivée 1 de janv. 1978 par Pierre GUIRALDENQ
- Version archivée 2 de avr. 1984 par Pierre GUIRALDENQ
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Étude et propriétés des métaux
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
6. Données numériques sur la diffusion
6.1 Relation entre les constantes d’autodiffusion et d’autres propriétés physiques
Le grand nombre de résultats expérimentaux, dont on dispose aujourd’hui, permet d’établir des relations semi-empiriques entre les constantes de diffusion en volume, aux joints, en surface, etc., et d’autres propriétés physiques des métaux (température de fusion, valence, etc.).
HAUT DE PAGE
Sherby et Simnad [86] ont regroupé en 1961 les droites d’Arrhénius d’un grand nombre d’éléments de la classification périodique en fonction du rapport Tf /T. Ces auteurs ont remarqué que chaque type de structure cristalline correspond ainsi à un domaine de valeurs bien définies (figure 20), le tout se ramenant à une équation du type :
avec :
- K :
- = K0 + Z
- Z :
- valence du métal
- K0 :
- coefficient de structure égal à :
-
14pour les métaux cc ;
-
17pour les métaux cfc et hc ;
-
21pour les métaux du type diamant.
On voit sur la figure 20 que D est égal à 1, quelle que soit la structure, pour T infini, c’est‐à‐dire Tf /T = 0. Cette valeur 1 serait donc la valeur du facteur de fréquence D0 en autodiffusion.
Une autre façon de voir le problème est de considérer tous les coefficients d’autodiffusion à la température de fusion Tf (valeur plus intéressante que celle obtenue à T∞ , où le cristal n’existe plus physiquement). La figure 21 donne cette représentation [89] à propos...
Cet article fait partie de l’offre
Étude et propriétés des métaux
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Données numériques sur la diffusion
BIBLIOGRAPHIE
-
(1) - ZENER (C.) - * - Journal of Applied Physics, 22, p. 372 (1951).
-
(2) - WERT (C.), ZENER (C.) - Coefficients de diffusion atomique interstitielle. - Phys. Review, 76, p. 1169 (1949).
-
(3) - ASKILL (J.), GIBBS (G.B.) - * - Phys. Stat. Sol., 11, p. 557 (1965).
-
(4) - ADDA (Y.), DOAN (N.V.), RONTIKIS (V.) - Simulation of diffusion in solids. Diffusion in metals and alloys - DIMETA 88 (cf. ouvrages généraux), p. 105 à 126, 10 fig., 8 tabl. (76 réf.).
-
(5) - LE CLAIRE (A.D.) - On the theory of impurity diffusion in metals - (Théorie de la diffusion des impuretés dans les métaux). Philosophical Mag. (GB), no 7, p. 141-67, 4 tabl. bibl. (54 réf.) (1962).
-
(6) - LE CLAIRE (A.D.), LIDIARD (A.B.) - * - Phil. Mag., 1, p. 518...
Cet article fait partie de l’offre
Étude et propriétés des métaux
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive