Présentation

Article

1 - ALLIAGES VISCOPLASTIQUES

2 - EFFETS DE TAILLE

3 - PHÉNOMÈNES DE RUPTURE (MATÉRIAUX SEMI-FRAGILES)

4 - MATÉRIAUX ANISOTROPES

Article de référence | Réf : M4157 v1

Effets de taille
Dureté des corps - Analyse d’autres comportements

Auteur(s) : Éric FELDER

Relu et validé le 17 mars 2021

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Cet article est consacré aux essais de dureté, notamment ceux à chaud conduits sur des alliages viscoplastiques. Les essais effectués avec de très faibles forces et pénétrations donnent lieu à des effets de taille, attendus dans le cas d’indenteurs sphériques. Sont également analysés les phénomènes de rupture associés aux matériaux semi-fragiles. Pour terminer, la caractérisation des matériaux anisotropes, mono- et polycristallins, est également abordée.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Éric FELDER : Ingénieur civil des Mines de Paris - Docteur ès Sciences - Maître de Recherches à l’École des Mines de Paris

INTRODUCTION

Dans cet article, nous nous intéressons tout d’abord au cas des essais effectués sur des alliages dont la contrainte d’écoulement dépend de la vitesse de déformation, par exemple lors des essais de dureté à chaud. Puis, nous faisons le point des connaissances actuelles sur les résultats d’essais effectués avec de très faibles forces et pénétrations où se manifestent des effets de taille. Nous précisons ensuite les phénomènes de rupture induits en indentant des matériaux semi-fragiles, à savoir la transition ductile/fragile et leur exploitation pour mesurer la ténacité de ces corps. Enfin, nous analysons le cas des matériaux anisotropes : monocristaux et corps polycristallins présentant une texture cristallographique.

Cet article fait partie d’une série d’articles sur les essais de dureté :

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-m4157


Cet article fait partie de l’offre

Étude et propriétés des métaux

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

2. Effets de taille

2.1 Divers aspects

L’effet de taille en dureté est associé au fait que la dureté dépend de la force appliquée. Cet effet est a priori normal dans le cas d’indenteurs sphériques puisque la déformation du matériau dépend de la taille du contact (cf. Dureté des corps et analyse qualitative). Il est également normal d’observer de tels effets lorsque la taille du contact est comparable à la taille des grains du matériau [29]. Il est par contre inattendu dans le cas d’indentations effectuées avec des indenteurs coniques type pyramides dans des matériaux réputés élastoplastiques et homogènes à l’échelle des indentations. Certaines observations ont pu être interprétées physiquement et attribuées à divers phénomènes :

  • le mode d’application de la force : vibrations parasites par exemple ; en outre, compte tenu de la possibilité d’effets viscoplastiques, même à basse température, il importe pour minimiser ces effets de comparer des résultats pour des durées d’application du chargement du type puissance identiques ou des vitesses de chargement exponentiel γ identiques 1.2 ;

  • la présence de films de surface de propriétés mécaniques différentes de celles du cœur du matériau, couches résultant soit d’une contamination [1], soit d’une réaction chimique (oxydes) soit d’un écrouissage superficiel induit par la préparation de la surface du matériau (polissage mécanique trop « brutal ») ;

  • l’imperfection...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Étude et propriétés des métaux

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Effets de taille
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - TABOR (D.) -   The hardness of solids.  -  Proc. of the Institute of Physics F- Physics in Technology, 1, 145-179 (1970).

  • (2) - O’NEILL (H.) -   Hardness measurements of metals and alloys.  -  Chapman and Hall, p. 238 (1967).

  • (3) - LAUGIER (M.T.) -   Hertzian indentation of ultra-fine grain size WC-Co composites.  -  J. Mater. Sci. Lett., 6, 841-943 (1987).

  • (4) - DOERNER (M.F.), NIX (W.D.) -   A method for interpreting the data from depth-sensing indentation instruments.  -  J. Mater. Res., 1, (No 4), 601-608, juill./août 1986.

  • (5) - PETHICA (J.B.), HUTCHINGS (R.), OLIVER (W.C.) -   Hardness measurement at penetration depths as small as 20 nm.  -  Phil. Mag. A 48, No 4, 593-606 (1983).

  • (6) - SUZUKI (H.) et coll -   Studies on the flow stress of metals and alloys.  -  Report of the Institute of Industrial science,...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Étude et propriétés des métaux

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS