Présentation
Auteur(s)
-
Jacqueline ETAY : Directrice de recherche au Centre national de la recherche scientifique - Laboratoire SIMAP, CNRS Grenoble INP UGA, St.-Martin-d’Hères, France
-
Yves FAUTRELLE : Professeur à l’institut national polytechnique de Grenoble - Laboratoire SIMAP, CNRS Grenoble INP UGA, St.-Martin-d’Hères, France
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
En métallurgie, il est souvent nécessaire de maîtriser la forme, la stabilité d’une interface entre un métal liquide et un fluide de couverture ainsi que la cinétique des éventuels transferts de masse à cette interface. L’utilisation de forces électromagnétiques qui permettent d’agir sans contact matériel sur le métal est un moyen de contrôle souple et efficace. Dans cet article, les mécanismes fondamentaux de l’induction sont introduits. L’action de champs magnétiques sur le comportement des surfaces libres des métaux liquides est illustrée par des exemples expérimentaux.
In metallurgy, controlling shape and stability of an interface between a liquid metal and a covering fluid layers as well as possible mass transfers through this interface is needed. The use of electromagnetic forces which allows to operate without physical contact with the metal is a flexible and effective means of control. In this article, basic mechanisms of induction are introduced. Actions of magnetic fields on the behavior of liquid metals free surfaces are illustrated using experimental examples.
Interface libre, contrôle électromagnétique, force électromagnétique, lévitation, dôme, transfert de masse aux interfaces, champ magnétique, induction.
free interface, electromagnetic control, electromagnetic force, levitation, dome, mass transfer, magnetic field, induction
VERSIONS
- Version archivée 1 de juil. 2005 par Jacqueline ETAY, Yves FAUTRELLE
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Mesures - Analyses > Contrôle non destructif > CND : méthodes globales et volumiques > Contrôle électromagnétique des interfaces libres > Lévitation et formage électromagnétique
Cet article fait partie de l’offre
Élaboration et recyclage des métaux
(135 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Lévitation et formage électromagnétique
3.1 Lévitation électromagnétique
Le champ magnétique B est créé par un inducteur dans lequel circule un courant alternatif d’intensité I (en A), d’amplitude maximale I 0, pulsé à la fréquence f (en Hz).
Les forces électromagnétiques j x B induites dans le métal liquide comportent une partie moyenne indépendante du temps et une partie pulsée à 2f. Dans la gamme de fréquences moyennes et hautes, c’est-à-dire de quelques dizaines à quelques centaines de kilohertz, et en raison de l’inertie du liquide, la partie pulsée des forces électromagnétiques n’a pas d’effet significatif sur la dynamique d’un bain de métal liquide. Cependant, la partie moyenne des forces électromagnétiques est responsable de divers phénomènes. D’une part, elle produit du brassage électromagnétique au cœur du bain. La vitesse caractéristique u de ce brassage est proportionnelle à la vitesse d’Alfven :
avec :
- B0 :
- intensité caractéristique du champ magnétique.
D’autre part, elle est capable de compenser partiellement ou totalement les effets de la gravité. On parle alors de lévitation ou de formage électromagnétique.
La photo de la figure 1 b illustre la lévitation d’une sphère de nickel par un inducteur constitué de 6 spires et 2 contre-spires parcourues par un courant d’intensité 300 A efficaces et d’une fréquence de 300 kHz. Ce type de procédé est utilisé pour fabriquer des alliages métalliques ultrapurs et aussi pour mesurer les propriétés thermophysiques d’alliages surfondus ...
Cet article fait partie de l’offre
Élaboration et recyclage des métaux
(135 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Lévitation et formage électromagnétique
BIBLIOGRAPHIE
-
(1) - MOREAU (R.) - Magnetohydrodynamics. - Kluwer Academic Pub., Dordrecht (1990).
-
(2) - DAVIDSON (P.) - An introduction to magnetohydrodynamics. - Cambridge University Press (2001).
-
(3) - ETAY (J.), FAUTRELLE (Y.), GAGNOUD (A.), DUTERRAIL (Y.), PERRIER (D.), BARDET (B.) - Lévitation électromagnétique de gouttes – présentation du projet MAGLEV. - Mécanique et Industrie - n° 5 (sept.-oct. 2004).
-
(4) - OKRESS (E.C.), WROUGHTON (D.M.), COMENETZ (C.), BRACE (P.N.), KELLY (J.C.K.) - Electromagnetic levitation of solid and molten metals. - J. Appl. Phys. vol. 23, p. 545 (1952).
-
(5) - FAUTRELLE (Y.) - Analytical and numerical aspects of the electromagnetic stirring induced by alternating magnetic fields. - Journal of Fluid Mechanic, vol. 102, p. 405-430 (1981).
-
...
ANNEXES
Cet article fait partie de l’offre
Élaboration et recyclage des métaux
(135 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive