Présentation
EnglishRÉSUMÉ
Les transferts de chaleur sont soumis à de nombreuses lois fondamentales connues et reconnues depuis bien longtemps. Grâce à l’étude des phénomènes à l’échelle du nanomètre, de nouveaux comportements ont été décelés et sont proposés. Tout d'abord, les lois permettant habituellement la description des échelles caractéristiques que sont la conduction, la convection et le rayonnement sont reprises. Les phénomènes mis en évidence lors de la modélisation des transferts de chaleur à l’échelle nanométrique sont ensuite proposés. Quelques applications, telles que la lithographie assistée thermiquement ou encore le stockage d’informations, viennent illustrer ces propos.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
INTRODUCTION
Les lois fondamentales qui régissent les transferts de chaleur enseignées aux ingénieurs sont connues depuis le dix-neuvième siècle. Depuis quelques années, la capacité à mesurer les phénomènes à l'échelle submicronique a mis en évidence de nouveaux comportements qui ne suivent pas ces lois. Dans ce dossier nous présentons les limites des lois habituellement utilisées pour décrire la conduction, la convection et le rayonnement, nous décrivons les phénomènes observés aux échelles nanométriques et nous présentons certaines des applications.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Sciences fondamentales > Nanosciences et nanotechnologies > Nanotechnologies pour l'énergie, l'environnement et la santé > Transferts de chaleur à l'échelle du nanomètre > Thermique des nano-objets
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Thermique des nano-objets
4.1 Nanofils
Les nanofils sont des structures cylindriques de diamètre inférieur au micromètre. Un exemple de réseau de nanofils structuré en « paillasson » est illustré dans la figure 7. Les mesures de conductivité thermique effective de nanotubes de silicium, effectuées par l'équipe d'Arunavar Majumdar à l'Université de Berkeley, aux États-Unis, ont révélé des valeurs largement inférieures à celles prédites par la loi de Fourier . Cette réduction est due à la résistance générée par l'interaction entre les porteurs de chaleur et les surfaces du système. La réflexion des phonons se fait soit de façon diffuse, leur énergie est redistribuée de manière uniforme dans toutes les directions, soit spéculaire. Dans ce second cas, l'intégralité de l'énergie se reportera uniquement dans la direction symétrique à la direction d'incidence. Si la réflexion est diffuse, une partie de l'énergie est retournée dans la direction d'arrivée ce qui contribuera à augmenter la résistance du fil. Les réflexions diffuses proviennent essentiellement de la rugosité. Les mécanismes de changement de polarisation à la réflexion contribuent aussi à la réduction de la conductivité thermique.
HAUT DE PAGE4.2 Nanotubes
Les nanotubes ressemblent à des fils, mais ce sont en fait des films constitués d'une seule couche d'atomes, de carbone, enroulés tel un grillage, pour former des tubes (figure 8). La densité d'états des porteurs de chaleur est faible parce que ces nanotubes sont des objets à deux dimensions. Le nombre de porteurs est réduit et donc les collisions sont raréfiées. Par ailleurs, les surfaces sont inexistantes, le flux de chaleur ne s'atténue pas et la résistance est quasi nulle. Ces effets sont...
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Thermique des nano-objets
BIBLIOGRAPHIE
-
(1) - CHEN (G.) - Nanoscale energy transport and conversion. - Pappalardo series in Mechanical Engineering, Oxford Press, New York (2005).
-
(2) - Microscale and Nanoscale Heat Transfer. - Groupement de Recherche Micro et Nanothermique eds., Topics in Applied Physics, Springer (2006).
-
(3) - JOULAIN (K.), MULET (J.P.), MARQUIER (F.), CARMINATI (R.), GREFFET (J.J.) - Surface electromagnetic waves thermally excited : radiative heat transfer, coherence properties and Casimir forces revisited in the near field. - Surf. Sci. Rep. 57, p. 59-112 (2005).
-
(4) - KARNIK (R.), CASTELLINO (K.), MAJUMDAR (A.) - Field-Effect Control of Protein Transport in Nanofluidic Transistor. - Appl. Phys. Lett. 88, 123114 (2006).
-
(5) - OKKELS (F.), TABELING (P.) - Spatiotemporal Resonances in Mixing of Open Viscous Fluids. - Phys. Rev. Lett. 92 (3), 038301 (2004).
-
(6) - LEFÈVRE (S.), VOLZ (S.),...
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive