Présentation

Article

1 - UNIVERS DES NANOMÉDECINES

2 - DEVENIR DES NANOMÉDECINES APRÈS ADMINISTRATION INTRAVEINEUSE

3 - DEVENIR APRÈS ADMINISTRATION ORALE

4 - DEVENIR APRÈS ADMINISTRATION CUTANÉE

5 - DEVENIR APRÈS ADMINISTRATION PULMONAIRE

  • 5.1 - Rappels physiologiques du poumon
  • 5.2 - Devenir des nanomédecines dans le poumon
  • 5.3 - Principaux modèles d’évaluation des nanomédecines utilisées par voie pulmonaire
  • 5.4 - Applications de l’utilisation des nanomédecines administrées par voie pulmonaire

6 - CONCLUSION

7 - GLOSSAIRE

Article de référence | Réf : MED5050 v2

Conclusion
Devenir dans l'organisme des nanoparticules utilisées comme médicament

Auteur(s) : Frédéric LAGARCE

Date de publication : 10 avr. 2024

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Les nanomédecines sont des médicaments issus des nanotechnologies. Leurs caractéristiques sont très diverses et influencent leur devenir dans l’organisme. Cet article propose de décrire, pour les principales voies d’administration (intraveineuse, orale, cutanée, pulmonaire), les interactions entre les nanoparticules et leur environnement biologique ainsi que les modèles permettant d’étudier les performances de ces nanomédicaments afin de faciliter leur passage en clinique. Les caractéristiques des nanoparticules importantes à maîtriser sont listées, et leur influence sur leur devenir et leur efficacité est résumée.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Fate of nanomedicine in the human body

Nanomedicines are drug delivery systems obtained from the use of nanotechnologies. Their characteristics are very diverse and have an impact on their fate in the body. This paper describes the interactions between the nanoparticles and their biological environment for the main routes of administration. Models used to study the performances of those drug delivery systems to allow their market access are also described. The characteristics that are important to monitor and to master are listed and their influence on the fate of the nanoparticles or their efficacy are discussed.

Auteur(s)

  • Frédéric LAGARCE : Professeur de biopharmacie - Faculté de santé, Angers - Inserm, U 1066 MINT, CNRS 6021, université d’Angers, Angers, France

INTRODUCTION

Les médicaments utilisés en santé humaine comportent une activité pharmacologique principale, mais aussi des effets annexes indésirables. Améliorer les performances du médicament en limitant ses potentiels effets toxiques revient à augmenter sa balance bénéfices/risques. Les nanotechnologies apportent des moyens d'augmenter la balance bénéfices/risques en changeant le devenir du médicament dans l'organisme. L’idée est d’augmenter la quantité de molécules actives dans les tissus ou sur les cellules d’intérêt et de diminuer cette quantité dans les tissus où cette molécule pourrait être toxique. Ceci revêt un caractère très important dans le domaine des traitements anticancéreux, où l'on recherche un ciblage très fin sur les cellules tumorales et non sur les cellules saines. Dans d’autres domaines, comme l’infectiologie, le but des nanomédecines est de protéger la molécule active de la dégradation rapide lorsqu’elle est fragile (cas des vaccins contre la Covid-19). L'idée sous-tendue par l’encapsulation de molécules au sein de nanoparticules consiste à associer la molécule active à un vecteur qui possède des propriétés physico-chimiques (taille, charges électrostatiques de surface, hydrophilie, etc.) qui détermineront ses lieux de diffusion dans l'organisme et son élimination. Ainsi, le devenir de la molécule active, médicament, dans l'organisme, ne dépendra plus de ses propriétés chimiques propres mais de celles du vecteur. Ce concept est appelé vectorisation. Une vectorisation réussie consiste ainsi à améliorer le ciblage des molécules médicamenteuses vers les tissus de l'organisme où l'on désire qu'elles soient actives tout en limitant leur diffusion vers les tissus pour lesquels elles pourraient être toxiques, ceci en allongeant leur durée de résidence dans les tissus d'intérêt pour prolonger l'effet pharmacologique et augmenter l’efficacité. La mise au point d'un vecteur efficace et peu toxique repose sur la maîtrise des procédés de fabrication et de caractérisation, parfois difficiles à l'échelle nanométrique, mais aussi sur la connaissance des structures physiologiques, histologiques, biologiques et biochimiques des tissus de l'organisme. En effet, le devenir dans l'organisme du vecteur que l'on désire contrôler, pour maîtriser de fait l'action du médicament, dépendra de l'interaction entre le vecteur et le milieu vivant. Ainsi, en fonction de la voie d'administration du médicament, le vecteur sera en contact avec différents tissus et son trajet dans l'organisme pourra être différent. La discipline qui permet d'étudier le comportement d'un médicament en fonction des structures biologiques qu'il rencontre s'appelle la biopharmacie. Cet article a pour objectif de décrire les concepts particuliers de biopharmacie lorsqu'ils sont appliqués aux vecteurs de nanomédicaments, appelés aussi nanomédecines. Une analyse du devenir des nanomédecines par voie d'administration sera proposée dans cet article afin d'éclairer le formulateur sur les structures cellulaires et tissulaires à prendre en compte pour un design rationnel et efficace des nanomédicaments.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

nanoparticles   |   biopharmaceutics   |   nanomedicines   |   pharmacokinetics

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-med5050


Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

6. Conclusion

Le devenir des nanomédecines dans l'organisme dépend de leurs caractéristiques physiques et chimiques, mais aussi des structures tissulaires et des molécules biologiques qu'elles rencontrent. Ainsi, il apparaît aujourd'hui qu'une connaissance approfondie de la physiologie, de l'histologie, de la biochimie et des mécanismes de biologie moléculaire est indissociable des connaissances technologiques lorsque l'on cherche à développer des nanomédicaments performants. À l'avenir, le ciblage des médicaments à l'aide de nanoparticules sera de plus en plus fin. Aujourd'hui, le ciblage des organites cellulaires commence à être recherché pour augmenter encore l'efficacité et diminuer la toxicité des molécules actives. Le ciblage reste encore insuffisant. Il est d’ailleurs intéressant de remarquer que le programme de nanomédecine qui a le plus réussi en matière de santé, avec plusieurs milliards de patients traités, a été la vaccination contre la Covid-19 qui ne nécessitait pas de ciblage ; à l’inverse, en cancérologie, les nouveaux traitements sont plus longs à pénétrer le marché et ne changent pas toujours la donne de façon importante. Même si les vaccins ARN ont ouvert la voie, la production de ces nouveaux médicaments en milieu industriel avec les critères qualité de l’industrie pharmaceutique, leur caractérisation poussée, leur évaluation clinique et leur mise sur le marché à un coût compatible avec une large utilisation par les malades du monde entier, reste un défi à relever dans les autres aires thérapeutiques.

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusion
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - SHEGOKAR (R.), SINGH (K.K.), MULLER (R.H.) -   Production & stability of stavudine solid lipid nanoparticles.  -  From lab to industrial scale. Int J Pharm, 416, p. 461-470 (2011).

  • (2) - HUYNH (N.T.), PASSIRANI (C.), SAULNIER (P.), BENOIT (J.-P.) -   Lipid nanocapsules : a new platform for nanomedicine.  -  Int J Pharm, 379, p. 201-209 (2009).

  • (3) - HUREAUX (J.), LAGARCE (F.), GAGNADOUX (F.), CLAVREUL (A.), BENOIT (J.-P.), URBAN (T.) -   The adaptation of lipid nanocapsule formulations for blood administration in animals.  -  Int J Pharm, 379, p. 266-269 (2009).

  • (4) - THOMAS (O.), LAGARCE (F.) -   Lipid nanocapsules : a nanocarrier suitable for scale-up process.  -  Journal of drug delivery science and technology, 23, p. 555-559 (2013).

  • (5) - FLORENCE (A.-T.) -   Nanotechnologies for site specific drug delivery : Changing the narrative.  -  Int J Pharm, 551, p. 1-7 (2018).

  • ...

1 Sites Internet

European technology platform on nanomedicine : ETP – Nanomedicine

http://www.etp-nanomedicine.eu/public

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS