Présentation
RÉSUMÉ
Les couches minces, les nanostructures et hétérostructures magnétiques présentent de nouvelles fonctionnalités et comportements dans le milieu des nanotechnologies. Cet article s’intéresse à ces phénomènes et propose principalement la description de leurs effets, concepts et mise en oeuvre. Tout d'abord, un fort intérêt est porté aux effets de couplage direct, indirect et de magnétorésistance. Un recensement des différentes mises en application de ces systèmes est rapporté : mémoire magnétiques non volatiles et application des nanoparticules magnétiques en biologie.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Thin layers, nanostructures and magnetic heterostructures present new functions in the nanotechnology sectors. This article deals with these phenomena and principally describes their effects, concepts and implementation. It firstly focuses on direct and indirect coupling effects as well as on magnetoresistance effects. The various applications of these systems are then reviewed: non-volatile magnetic memories and application of magnetic nanoparticles in biology.
Auteur(s)
-
par Olivier FRUCHART
INTRODUCTION
Les couches minces, nanostructures et hétérostructures magnétiques présentent des comportements différents et des fonctionnalités nouvelles par rapport aux matériaux massifs : effets thermiques et anisotropie exaltés, domaines et parois spécifiques, effets de magnétotransport géants, etc. Ces effets et mise en œuvre sont décrits dans les dossiers Couches minces et nanostructures magnétiques (partie 1)[NM 1 201] et Couches minces et nanostructures magnétiques (partie 2)[NM 1 202], suivis d'exemples de leur intégration technologique dans les domaines de l'électronique et de la médecine : disques durs, capteurs de champ, traceurs, etc.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Sciences fondamentales > Nanosciences et nanotechnologies > Nanotechnologies pour l'électronique, l'optique et la photonique > Couches minces et nanostructures magnétiques (partie 2) > Mises en application
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Mises en application
2.1 Mémoires magnétiques non volatiles
HAUT DE PAGE
2.1.1 Principe de vanne de spin
La GMR et la TMR sont les principes physiques des nanostructures avancées, qui permettent de coupler le magnétisme à l'électronique. Les vannes de spin sont les hétérostructures, en pratique lithographiées, dans lesquelles sont mis en œuvre ces principes pour leur utilisation pratique. Le rôle d'une vanne de spin est de pouvoir atteindre entièrement et à faible champ appliqué les états parallèle et antiparallèle des deux couches F1 et F2, pour bénéficier du rapport de magnétotransport maximal. Une vanne de spin consiste en une couche dure fixée par couplage direct, avec un antiferromagnétique pour augmenter sa coercitivité, et une couche douce, appelée (abusivement) couche libre, dont l'aimantation sera la seule à varier en fonctionnement. La vanne de spin a été inventée en 1991. Les applications des vannes de spin sont les capteurs magnétiques (position ou rotation, compas électronique, têtes de lecture pour disques durs et bandes) et les mémoires magnétiques (MRAM).
Dans la pratique, une vanne de spin optimisée peut avoir une structure très complexe, comme celle présentée sur la figure 7. Suivant les notations de cette figure, la couche dite libre F est composite FeNi/CoFe. Le FeNi, impose une faible coercitivité et la couche interfaciale de CoFe rehausse la polarisation à l'interface pour augmenter la magnétorésistance (cf. § 1.3...
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Mises en application
BIBLIOGRAPHIE
-
(1) - JOHNSON (M.) - Magnetoelectronics. - Elsevier Academic Press (2004).
-
(2) - NOGUÉS (J.), SCHULLER (I.K.) - Exchange bias. - J. Magn. Magn. Mater. 192, 203 (1999).
-
(3) - BRUNO (P.) - Theory of interlayer exchange interactions in magnetic multilayers. - Phys. : Condens. Matter. 11, 9403 (1999).
-
(4) - STILES (M.D.) - Interlayer exchange coupling. - J. Magn. Magn. Mater. 200, 322 (1999).
-
(5) - PARKIN (S.S.P.) - Systematic variation of the strength and oscillation period of indirect magnetic exchange coupling through the 3d, 4d, and 5d transition metals. - Phys. Rev. Lett. 67, 3598 (1991).
-
(6) - HEHN (M.), MONTAIGNE (F.), SCHUHL (A.) - Magnétorésistance géante et électronique de spin. - Techniques de l'Ingénieur, [E 2 135], Électronique, oct. 2002.
- ...
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive