Présentation
EnglishRÉSUMÉ
Les nanoparticules sont des particules aux dimensions de l’ordre du nanomètre ou au dessous, étudiées et manipulées par les nanosciences et les nanotechnologies. Afin de réduire les effets indésirables dus aux différentes propriétés physiques, à l’échelle nanométrique comme macroscopique, l’étude de ces nanoparticules est nécessaire. Cet article donne dans un premier temps quelques définitions, puis décrit la structure atomique de ces particules (atome à l’amas, nombres magiques, fullerènes, etc). Une approche thermodynamique est ensuite proposée grâce à l’analyse de la fusion des nanoparticules et aux diagrammes de phase. La notion de transfert thermique est par la suite abordée.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
INTRODUCTION
Des effets négligeables à notre échelle macroscopique jouent un rôle essentiel à l'échelle nanométrique, et réciproquement. Diverses propriétés physiques particulières des nanoparticules inorganiques se manifestent lorsque leur taille atteint environ 10 nm.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Sciences fondamentales > Nanosciences et nanotechnologies > Nanosciences : concepts, simulation et caractérisation > Les nanoparticules inorganiques > Conclusion
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
8. Conclusion
Les propriétés physiques des nanoparticules diffèrent de celles de la matière ordinaire. Ainsi, l'arrangement atomique des petites particules est différent de ce que l'on observe avec de gros cristaux. Quant à leur stabilité, elle est fonction de la taille des nanoparticules. Ainsi, leur température de fusion et leur diagramme de phase diffèrent de ceux de la matière ordinaire dès que la taille est inférieure à 5 nm. Cela se révèle important lors de la synthèse des nanoparticules, principalement lorsque les propriétés physico-chimiques recherchées dépendent fortement de la structure cristallographique et de la composition.
Quant aux propriétés électroniques, les effets de taille se font sentir dès que le rayon des nanoparticules atteint 10 nm. Les effets quantiques deviennent alors prépondérants. Cela retentit notamment sur les propriétés électriques et optiques des nanoparticules. Les propriétés électriques sont importantes pour la compréhension des mécanismes devant avoir lieu dans des applications telles que l'électronique moléculaire. Quant aux propriétés optiques, mentionnons les applications dans le domaine de la photonique, ainsi que les aspects plus esthétiques, comme la couleur de solutions contenant des nanoparticules métalliques.
Outre les propriétés décrites ici, citons encore les propriétés magnétiques, mécaniques, chimiques des nanoparticules, qui donnent lieu à des applications dans des domaines aussi variés que le secteur biomédical, les matériaux ultradurs, la chimie catalytique, les verres autonettoyants, etc.
Les propriétés particulières des nanoparticules se manifestent lorsque leur taille est d'environ 10 nm. Cette dimension caractéristique définit le domaine d'utilisation des nanotechnologies.
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusion
BIBLIOGRAPHIE
-
(1) - TIMP (G.L.) (éd.) - Nanotechnology. - Springer (1999).
-
(2) - WAUTELET (M.) (éd.) - Les Nanotechnologies. - Dunod (2003).
-
(3) - BHUSHAN (D.) (éd.) - Springer Handbook of Nanotechnology. - Springer (2004).
-
(4) - SUGANO (S.) - Microcluster Physics. - Springer-Verlag (1991).
-
(5) - * - The Nanotube Site. http://www.nanotube.msu.edu
-
(6) - CARPICK (R.W.), SALMERON (M.) - * - Chem. Rev., 97, 1163 (1997).
-
(7) - YACAMAN (M.J.), ASCENSIO (J.A.), LIU (H.B.), GARDEA-TORRESDEY (J.) - * - J. Vac. Sci. Technol. B, 19, 1091 (2001).
- ...
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive