Présentation
RÉSUMÉ
La technologie HiPIMS (High Power Impulse Magnetron Sputtering) représente une avancée majeure en matière de dépôts physiques de films minces fonctionnels en phase vapeur (Physical Vapor Deposition). Dans un premier temps, un bref rappel de la pulvérisation cathodique magnétron conventionnelle est effectué. En second lieu, la technologie HiPIMS est présentée schématiquement en abordant notamment les difficultés de génération et de mesure des impulsions. Sont abordées également des méthodes de simulation et de conception de champs magnétiques appliquées aux dispositifs de pulvérisation magnétron. Au final, deux cas particuliers d'application de cette technologie sont exposés : la croissance de films de dioxyde de titane et de trioxyde de tungstène.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Matthieu MICHIELS : Ingénieur électronicien, assistant de recherche au sein du laboratoire de chimie des interactions Plasma Surface (ChiPS). Materia Nova, Centre de Recherche, Mons, Belgique
-
Stephanos KONSTANTINIDIS : Chercheur qualifié du FNRS, université de Mons, laboratoire de chimie des interactions Plasma Surface (ChiPS), Mons, Belgique
-
Rony SNYDERS : Professeur, université de Mons, laboratoire de chimie des interactions Plasma Surface (ChiPS) Mons, Belgique
INTRODUCTION
La technologie HiPIMS, high power impulse magnetron sputtering, représente une avancée majeure en matière de dépôts physiques de films minces fonctionnels en phase vapeur (physical vapor deposition).
Dans un premier temps, nous ferons un bref rappel de la pulvérisation cathodique magnétron conventionnelle.
En second lieu, la technologie HiPIMS sera présentée schématiquement en abordant notamment les difficultés de génération et de mesure des impulsions. Nous présenterons également des méthodes de simulation et de conception de champs magnétiques appliquées aux dispositifs de pulvérisation magnétron.
Finalement, deux cas particuliers d’application de cette technologie seront abordés : la croissance de films de dioxyde de titane et de trioxyde de tungstène.
The High Power Impulse Magnetron Sputtering technology is a remarkable advance in the field of Physical Vapor Deposition (PVD).
First, we will talk about the conventional magnetron sputtering.
Secondly, the HiPIMS technology will be presented schematically in order to highlight the difficulties to create and measure high power impulses. The simulation of the cathode magnetic field will be also emphasized in this article.
Finally, two particular cases of applications will be presented, the growth of titanium oxide thin films and tungsten oxide thin films.
HiPIMS – HPPMS – plasma – magnétron – simulation – films minces
HiPIMS – HPPMS – plasma – magnetron – simulation – thin films
MOTS-CLÉS
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Matériaux > Traitements des métaux > Traitements de surface des métaux par voie sèche et en milieu fondu > La pulvérisation cathodique magnétron en régime d’impulsions de haute puissance (HiPIMS) > Contexte
Accueil > Ressources documentaires > Sciences fondamentales > Nanosciences et nanotechnologies > Nanomatériaux : synthèse et élaboration > La pulvérisation cathodique magnétron en régime d’impulsions de haute puissance (HiPIMS) > Contexte
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Contexte
Le monde industriel est en perpétuelle recherche de nouveaux produits, de nouveaux marchés ou de nouvelles technologies. C’est dans cette optique que le développement de nouveaux matériaux en couches minces, micro ou nanométriques déposés par différents procédés sur des substrats de nature et de formes parfois complexes, confère de nouvelles propriétés ou fonctions, et, par conséquent, une grande valeur ajoutée. Ainsi, dans le cas du verre ou de l’acier, on citera entre autres les propriétés photocatalytiques pour l’autonettoyage et/ou la dépollution, les propriétés antibactériennes ou de protection contre la corrosion.
Pour obtenir ces couches minces, plusieurs méthodes de synthèse sont couramment utilisées : les dépôts électrochimiques, les procédés par immersion, le dépôt physique en phase vapeur (PVD), le dépôt chimique en phase vapeur (CVD) ou encore, les procédés sol-gel. Pour l’industriel, le choix du procédé dépend évidemment de la facilité d’utilisation et d’implémentation, de la compatibilité du procédé avec le type du substrat (ex : polymères), de son coût, de son impact environnemental et des installations existantes. La technologie « plasma » reste dans le groupe de tête des technologies les plus « vertes ». De plus, cette technologie permet d’obtenir un contrôle élevé des propriétés physico-chimiques des revêtements déposés (densité, rugosité, cristallinité, composition chimique...).
En utilisant les procédés conventionnels de pulvérisation à courant continu, la majorité des particules pulvérisées reste globalement neutre, ce qui empêche de contrôler l’énergie et la direction des espèces participant à la croissance du film. Or, pour bon nombre d’applications, il est intéressant de maîtriser cet aspect pour permettre aux espèces de se déposer majoritairement sur la surface du substrat et éviter, de cette manière, la pulvérisation sur les parois du...
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Contexte
BIBLIOGRAPHIE
-
(1) - BELMONTE (T.) - Dépôts chimiques à partir d’une phase gazeuse - Techniques de l’ingénieur, [M 1 660] (2010).
-
(2) - HELMERSSON (U.) - Ionized physical vapor deposition (IPVD) : a review of technology and applications - Thin Solid Films, 513, p. 1-24 (2006).
-
(3) - DE POUCQUES (L.) - Comparison of the ionization efficiency in a microwave and a radio-frequency assisted magnetron discharge - Surfaces & Coatings Technology, 200, 800-803 (2005).
-
(4) - LOGAN (J.) - R.F. diode sputtering - Thin Solid Films, 188, 307-321 (1990).
-
(5) - SAFI (I.) - Recent aspects concerning DC reactive magnetron sputtering of thin films : a review - Surface and Coatings Technology, 127, p. 203-219 (2000).
-
(6) - SOMKHUNTHOT (W.) - Bipolar pulsed-DC power supply for magnetron sputtering and thin...
DANS NOS BASES DOCUMENTAIRES
-
La mesure de courant en milieu industriel
ANNEXES
Materia Nova : http://www.materianova.be (page consultée le 14 août 2012)
HAUT DE PAGE
Dépôt par pulvérisation cathodique magnétron en régime impulsionnel avec préionisation EP 1 580 298 A1.
Pulsed Magnetron sputtering deposition with preionization US 2007/0034498 A1.
HAUT DE PAGECet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive