Article de référence | Réf : NM3011 v2

Conclusion
Propriétés des nano-objets - Longueurs critiques, effets de taille et de forme

Auteur(s) : Pierre MÜLLER

Relu et validé le 14 déc. 2020

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Les propriétés d’un matériau de taille nanométrique diffèrent de celles du même matériau à l’échelle micro ou macroscopique. La taille en dessous de laquelle une propriété est modifiée dépend de la propriété elle-même, via une ou des longueurs caractéristiques. L’objet de cet article est de décrire quelques longueurs caractéristiques afin d’explorer les effets de taille et de forme sur les propriétés mécaniques, électroniques, optiques, de transport, magnétiques et thermodynamiques ou chimiques des nano-objets. Ces propriétés intrinsèques donnent lieu à des innovations dans de nombreux domaines industriels (médecine, énergie, environnement, transport, textile, industrie chimique, électronique…).

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Pierre MÜLLER : Professeur à l’université d’Aix-Marseille - Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, - Campus de Luminy, 13288 Marseille, France

INTRODUCTION

La réduction de taille d'un objet vers des dimensions nanométriques modifie quantitativement et qualitativement ses propriétés. C’est pourquoi, alors que les propriétés d’un matériau macroscopique ne dépendent que de sa structure et de sa composition, les propriétés d'un nano-objet résultent également de sa taille et de sa forme. Ainsi, si aux échelles usuelles, l'ingénieur doit, pour obtenir des propriétés spécifiques, rechercher la composition chimique puis la structure cristallographique idéales, à l'échelle nanométrique le même ingénieur dispose des variables supplémentaires que sont la taille et la forme de l'objet. L'espace des paramètres accessibles ainsi augmenté est à l’origine de nombreuses applications potentielles. Il n’existe cependant pas de règle universelle permettant de prédire en dessous de quelle taille critique les propriétés d’un nano-objet diffèrent de celles du même matériau massif à partir duquel il a été formé. Dans le cas des matériaux hétérogènes, composés de domaines ou de grains, la taille critique est celle d’un domaine. Pour les matériaux homogènes, toute propriété étant caractérisée par une (ou plusieurs) longueurs caractéristiques, un nano-objet doit avoir une taille critique de l’ordre de grandeur ou plus petite que cette longueur caractéristique pour que ses propriétés diffèrent de celles du matériau massif.

L’objectif de cet article est, sans prétendre à l’exhaustivité, d’analyser les propriétés mécaniques, électroniques, optiques, magnétiques, de transport et thermodynamiques des nano-objets en prêtant une attention particulière aux longueurs caractéristiques des propriétés étudiées et ainsi mettre en exergue les tailles critiques en dessous desquelles les nano-objets peuvent présenter des propriétés spécifiques liées à leur taille mais aussi à leur forme. Une attention particulière est portée aux nanoparticules, aux films ultra minces et matériaux bidimensionnels ainsi qu’aux nanofils ou nanotubes qui sont des nano-objets présentant une dimension nanométrique dans respectivement trois, deux ou une direction. Les matériaux nanostructurés ou nanocomposites qui, bien que de dimensions macroscopiques, peuvent présenter des propriétés nouvelles induites par leur structuration à l’échelle nanométrique, sont également évoqués.

Afin de faciliter la lecture, chaque section dédiée à une propriété est précédée d’un rappel succinct (dans un encart) suivie d’une définition des longueurs caractéristiques associées. Les principaux effets de taille et de forme sur les propriétés de nano-objets de taille inférieure à ces tailles critiques sont alors décrits et quelques exemples d’applications présentés.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-nm3011


Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

5. Conclusion

Lorsque la taille d’un objet diminue, des effets spécifiques apparaissent dus à l’augmentation du nombre d’atomes de surface par rapport au nombre d’atomes de volume, aux effets de confinement quantique, à l’absence (ou présence) de défauts spécifiques… Il est cependant impossible de définir une dimension critique universelle en dessous de laquelle les propriétés d’un nano-objet diffèrent de celles d’un matériau massif. En effet, chaque propriété est caractérisée par une ou des longueurs caractéristiques en dessous desquelles les phénomènes physiques sont grandement modifiés. Lorsqu’un nano-objet aura une dimension inférieure à une telle longueur critique, ses propriétés diffèreront de celles du matériau massif. Ainsi, par exemple pour une nanoparticule de taille inférieure au libre parcours moyen des électrons, ce sont les collisions des électrons avec la surface de la particule qui deviendront importantes. De même, une nanoparticule métallique de taille inférieure à la profondeur de pénétration d’une onde présentera des propriétés optiques spécifiques etc. Il est donc primordial, pour bien appréhender les propriétés des nano-objets, de connaître les longueurs caractéristiques les plus importantes associées à chacune des grandes familles de propriétés (mécanique, électronique, optique, magnétique, de transport, thermodynamique). Dans un certain nombre de cas, et dans le cadre d’approximations simplificatrices (particules sphériques, homogènes, approximation quasi statique, approximation du gaz d’électrons libres…) il est possible d’établir des relations analytiques permettant de prédire qualitativement et quantitativement quelques comportements spécifiques des nano-objets. Au-delà de ces approximations il est nécessaire d’utiliser des outils numériques de simulation pour prédire ou calculer précisément les effets de taille et de forme.

En pratique, il est difficile d’utiliser, pour des applications, des nano-objets libres, c’est-à-dire non supportés par un substrat. L’utilisation industrielle des nano-objets est donc souvent liée à leur incorporation dans une matrice ou sur un substrat. C’est ainsi que sont essentiellement exploitées les propriétés de matériaux nanostructurés ou nanoporeux. Beaucoup d’efforts sont industriellement réalisés en particulier dans les domaines de l’énergie,...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

TEST DE VALIDATION ET CERTIFICATION CerT.I. :

Cet article vous permet de préparer une certification CerT.I.

Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.

Obtenez CerT.I., la certification
de Techniques de l’Ingénieur !
Acheter le module

Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusion
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - MÜLLER (P.), LEROY (F.) -   Nanosciences et nanomatériaux : rappels de cours et apprentissage par exercices corrigés.  -  Éditeur Ellipses, Collection : Formations et techniques, 288 pages (2019).

  • (2) - MÜLLER (P.), ANDRIEU (S.) -   Les surfaces solides : concepts et méthodes.  -  Éditeur EDP Sciences, CNRS Editions, 510 pages (2005).

  • (3) - MÜLLER (P.), SAUL (A.) -   *  -  . – Surface Science Reports, 54, 157 (2004).

  • (4) - MÜLLER (P.) et al -   *  -  . – Advanced Natural Science : Nanoscience and Nanotechnology 5, 013002 (2014).

  • (5) - SINGLETON (J.) -   Band theory and electronic properties of solids, Oxford Master Series in Condensed Matter Physics.  -  Oxford University Press, 222 pages (2001).

  • (6) - MÜLLER...

1 Annuaire

HAUT DE PAGE

1.1 Laboratoires – Bureaux d'études – Écoles – Centres de recherche (liste non exhaustive)

La plupart des laboratoires français et internationaux étudiant les matériaux s’intéressent à leurs propriétés à l’échelle nanométrique. La liste suivante de laboratoires français est non exhaustive :

  • Centre d’élaboration de Matériaux et d’Etudes Structurales, Toulouse

    http://www.cemes.fr

  • Laboratoire Matériaux et Phénomènes Quantiques, Paris

    ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Sommaire

QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE

1/ Quiz d'entraînement

Entraînez vous autant que vous le voulez avec les quiz d'entraînement.

2/ Test de validation

Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.

Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS