Présentation
En anglaisRÉSUMÉ
Les aérogels sont des matériaux très poreux obtenus par procédé sol-gel et séchage hypercritique. De par leur mode de synthèse et leur microstructure poreuse ils présentent des caractéristiques physiques uniques qui leur confèrent des potentialités intéressantes dans des domaines très variés: l’isolation thermique, l’électrochimie, la catalyse, l’acoustique, le confinement des déchets nucléaires, l’astrophysique mais aussi les biosciences. Après avoir décrit certaines propriétés physiques particulières des aérogels nous présentons les grandes classes d’aérogels étudiés dans la littérature (aérogels de silice, aérogels d’oxydes, aérogels organique, aérogels composites...) et des applications très différentes de ces matériaux.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Aerogels are highly porous materials obtained from the sol-gel process and supercritical drying. Thanks to the synthesis process and their porous microstructure, aerogels exhibit unique physical properties allowing interesting applications in technology, such as in thermal insulation, electrochemistry, catalysis, aerospace, acoustics, nuclear waste containment, and also biosciences. We describe some of the unusual properties of physical aerogels and present the different classes of aerogels studied in the literature (silica aerogels, oxide aerogels, organic aerogels and composite aerogels) and their different applications.
Auteur(s)
-
Thierry WOIGNIER : Directeur de Recherche au CNRS - Aix Marseille Université, Université Avignon, CNRS, IRD, IMBE - IRD UMR 237, Campus Agro Environnemental Caribéen, le Lamentin, Martinique
INTRODUCTION
Les premiers « aérogels » ont été préparés en 1931 lorsque Kistler, de l’université du Pacifique de Stockton en Californie, chercha à démontrer qu’un gel contenait un réseau solide continu de même taille et de même forme que ce gel. Kistler conjecturait que lors du séchage, l’interface liquide-vapeur du liquide d’évaporation exerçait des forces importantes de tension superficielle conduisant à l’effondrement de la structure solide. Il a alors découvert l’aspect principal de la production d’aérogel : le séchage hypercritique qui consiste à faire passer de manière continue, c’est-à-dire sans changement d’état, la phase liquide sous sa forme gazeuse.
Les premiers gels étudiés par Kistler étaient des gels de silice préparés par condensation acide d’une solution aqueuse de silicate de sodium. L’eau présente dans la solution était échangée par un alcool afin que puisse être réalisé le séchage hypercritique, permettant finalement d’obtenir des aérogels transparents, de faible densité et très poreux.
Même s’ils apparaissaient intéressants à de nombreux égards, les aérogels furent néanmoins délaissés par suite du trop long temps de préparation et ce n’est qu’à la fin des années 1970 que l’intérêt fut renouvelé par la mise au point d’un nouveau processus de fabrication par l’université Claude Bernard à Lyon. En remplaçant le silicate de sodium par un alcoxysilane, le tetramethoxysilane (TMOS), et en hydrolysant ce TMOS dans une solution de méthanol, produisit en effet un gel en une seule étape, appelé « alcogel » puisque le liquide remplissant les pores n’était autre qu’un alcool.
Cette technique a été petit à petit appliquée à d’autres précurseurs organométalliques conduisant à des aérogels minéraux autres que la silice (alumine, zircone, TiO2…). Dans les années 1990, elle a aussi été proposée pour la synthèse d’aérogels organiques issus de la polycondensation de résorcinol et de formaldéhyde. Des aerogels de carbone ont ensuite été obtenus par pyrolyse des aerogels organiques. L’attrait de la texture particulière des aérogels incite la communauté scientifique à les décliner dans une grande variété de compositions pour des applications qui touchent à des domaines aussi différents que peuvent l’être l’isolation thermique, l’électrochimie, la catalyse, la détection de particules, l’acoustique, le confinement des déchets nucléaires, l’astrophysique mais aussi les biosciences.
Dans la suite de cet article, sont traitées quelques propriétés des aérogels, qu’ils soient de type organique ou plus particulièrement de silice (oxyde simple), ces derniers ayant été les plus étudiés. Dans la dernière partie de l’article nous présenterons diverses applications de ces matériaux.
KEYWORDS
insulation | aerogels | porosity | sintering
VERSIONS
- Version archivée 1 de janv. 2005 par Laurent KOCON, Jean PHALIPPOU
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Sciences fondamentales > Nanosciences et nanotechnologies > Nanomatériaux : propriétés > Aérogels - Aspects matériaux > Conclusion
Accueil > Ressources documentaires > Matériaux > Matériaux fonctionnels - Matériaux biosourcés > Surfaces et structures fonctionnelles > Aérogels - Aspects matériaux > Conclusion
Accueil > Ressources documentaires > Sciences fondamentales > Physique Chimie > États de la matière > Aérogels - Aspects matériaux > Conclusion
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
6. Conclusion
Les aérogels présentent des propriétés remarquables : de très faible densité, de surface spécifique élevée, de faible indice de réfraction et constante diélectrique, de faible conductivité thermique et vitesse acoustique… Sur le plan structural les aérogels sont caractérisés par trois composantes physiques : la phase solide, la phase poreuse et la surface spécifique séparant les deux phases. Dans certaines conditions de synthèse ils peuvent avoir une structure fractale entre 1 et 100 nm.
Les caractéristiques et la relative influence de chacun de ces composants (composition chimique de la phase solide, volume poreux et distribution en taille de pores, nature chimique et accessibilité de l’interface) donnent des propriétés particulières et uniques aux aérogels conduisant à des applications spécifiques D’une manière générale, mais pas uniquement, ces propriétés sont liées à leur très grande porosité associée à la forte tortuosité du réseau solide cohérent.
Le revers de la médaille des aérogels est leur faible résistance mécanique (10 kPa) et leur fragilité qui limitent les applications et les rendent imprévisibles dès lors que ceux-ci doivent être soumis à des contraintes de tension supérieures à cette faible résistance mécanique. On peut cependant noter que cet inconvénient disparaît si l’aérogel n’est pas utilisé en tant que tel mais comme précurseur destiné à être transformé et donc renforcé par un traitement thermique (aérogels partiellement densifiés, verre d’optique, matrice de confinement, matériau hôte). Un nouveau champ d’application est donc celui de l’aérogel matrice d’accueil permettant d’imaginer toute une panoplie de matériaux mixtes ou composites : verres dopés, vitrocéramiques, composites gel-polymère, gel-métal…. Ces matériaux à part entière élargissent les champs d’applications et d’études du procédé sol-gel. Si l’on peut contrôler la diffusion des espèces liquides (ou gazeuses) à l’intérieur du volume poreux, on peut envisager la possibilité de réaliser des matériaux ayant un gradient de composition chimique et donc des propriétés physiques spécifiques.
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusion
BIBLIOGRAPHIE
-
(1) - TEWARI (P.H.), HUNT (A.J.), LOFFTUS (K.D.) - Ambient temperature supercritical drying of transparent silica aerogels. - Mater. Lett. 3, p. 363-7 (1985).
-
(2) - WOIGNIER (T.), DUFFOURS (L.), COLOMBEL (P.), DURIN (C.) - Aerogels materials as space debris collectors. - Advances in Materials Science and Engineering vol. 2013, Article ID 484153, 6 pages.
-
(3) - TILLOTSON (T.M.), HRUBESH (L.W.) - Transparent ultralow-density aerogels prepared by a two step sol-gel process. - J. Non-Cryst. Solids, 145, p. 44-50 (1992).
-
(4) - HENNING (J.), SVENSON (L.) - Production of silica aerogel. - Physica Scripta. 23, p. 697-702 (1981).
-
(5) - POELZ (G.) - Aerogel in high energy physics. - Aerogels, (aerogels), ed. J. Fricke, Springer-Verlag (Berlin), pp. 176-187 (1986).
-
(6)...
DANS NOS BASES DOCUMENTAIRES
-
Isolation thermique à température ambiante. Bases physiques.
-
Conductivité et diffusitivité thermique des solides.
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive