Présentation

Article

1 - UNE BRÈVE HISTOIRE DU VÉHICULE AUTONOME

2 - VÉHICULES AUTONOMES : DE QUOI PARLE-T-ON ?

3 - LA TÂCHE DE CONDUITE : ASPECTS COGNITIFS ET SENSORI-MOTEURS

4 - AUTONOMES ET COMMUNICANTS : POURQUOI ?

5 - FONCTIONS ET TECHNOLOGIES CLÉS DU VÉHICULE AUTONOME

6 - ARCHITECTURES POUR LE VÉHICULE AUTONOME

7 - VÉHICULES ET INFRASTRUCTURE : DES ATTENTES RÉCIPROQUES

8 - DÉPLOIEMENT DU VÉHICULE AUTONOME

9 - VERROUS

  • 9.1 - Verrous techniques
  • 9.2 - Verrous non techniques

10 - CONCLUSION

11 - GLOSSAIRE

12 - SIGLES, NOTATIONS ET SYMBOLES

Article de référence | Réf : TRP1012 v1

Architectures pour le véhicule autonome
Véhicule autonome et connecté - Technologies, enjeux et déploiement

Auteur(s) : Jacques EHRLICH

Date de publication : 10 sept. 2021

Cet article offert jusqu'au 31/12/2025
Consulter en libre accès

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Le véhicule autonome et communicant sous ses aspects techniques ou non techniques fait l'objet du présent article. Après un bref historique, ce sont les cinq niveaux d’automatisation définis dans la recommandation SAE J3016 qui sont décrits. L’article aborde ensuite les aspects cognitifs et sensori-moteurs de la tâche de conduite chez l’être humain ce qui permet d’introduire sept fonctions clés du véhicule autonome et la façon de les organiser. Les évolutions conjointes des véhicules et de l’infrastructure sont ensuite évoquées dans une perspective d’optimisation de la sécurité et de la mobilité. La question du déploiement progressif des véhicules autonomes est également explorée et l’article s’achève par l’analyse des verrous techniques et non techniques qui pourraient constituer des freins au déploiement.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Jacques EHRLICH : Ancien directeur du laboratoire sur les Interactions Véhicules-Infrastructure-Conducteurs IFSTTAR (fusionné en 2019 avec l’université Gustave Eiffel) - Directeur de Recherche émérite Université Gustave Eiffel, Versailles, France

INTRODUCTION

Le concept de véhicule autonome date des années 1980, où il suscita un premier engouement dans les milieux de la recherche et de l’industrie, suivi au début des années 2000 d’une forme de traversée du désert due essentiellement à de fortes incertitudes sur son acceptabilité par les usagers. L’arrivée du Google Car a changé la donne en créant un véritable choc plus médiatique que technologique dans un contexte devenu favorable à cause de la pression croissante et généralisée du contrôle-sanction automatisé. Depuis le véhicule autonome et connecté n’a cessé de susciter un intérêt croissant et l’émergence d’un marché a lancé dans la course tous les constructeurs et équipementiers. Cela s’est d’abord concrétisé par une définition claire et consensuelle du concept sous la forme de cinq niveaux d’automatisation allant de simples systèmes d’aides à la conduite jusqu’à l’automatisation totale où la présence d’un conducteur n’est plus forcément requise. Grâce à cette approche graduée, c’est plus à une évolution qu’à une révolution à laquelle on assistera dans les deux prochaines décennies : les systèmes avancés d’aide à la conduite (ADAS), qui se situent aux niveaux 2 et 3 contiennent les briques technologiques qui constitueront les fonctions clés des véhicules autonomes des niveaux 4 et 5 et dont les plus importantes sont : la localisation précise, la détection des obstacles, la modélisation de la dynamique du véhicule, l’analyse et la compréhension de la scène routière, la planification de la trajectoire, le maintien de la tenue de situation et la surveillance de l’état du conducteur. Toutes ces briques doivent s’intégrer dans le véhicule pour former l’architecture électronique et informatique embarquée des véhicules autonomes. Si pendant longtemps, on a cru que le véhicule autonome était une affaire purement « automobile », la fin des années 2010 a mis en évidence l’importance de l’infrastructure et souligné les synergies à faire jouer dans une collaboration gagnante-gagnante entre les industriels de l’automobile, ceux de la route et les pouvoirs publics, tout ceci dans un souci d’accroissement de la sécurité et d’optimisation de la mobilité. Pour autant toutes les difficultés techniques ne sont pas résolues : elles ont même été considérablement sous-estimées rendant la prospective très difficile à établir notamment pour ce qui concerne les véhicules autonomes du niveau 5. Pour cerner la complexité et tenter de la réduire, on a compris qu’il était nécessaire de mieux préciser les situations dans lesquelles les véhicules autonomes seront amenés à évoluer : ce sont les notions récentes d’ODD (Operational Design Domain) qui fixent le cadre d’évolution des véhicules et d’ISAD (Infrastructure Support levels for Automated Driving) qui précisent la contribution attendue de l’infrastructure. En Europe, toutes ces avancées ont permis de clarifier les modalités de déploiement progressif des véhicules autonomes selon des cibles technologiques (les types de véhicules) et des cas d’usages (les scénarios d’utilisation) qui ont été précisés par la plateforme européenne ERTRAC. Mais au-delà des cas d’usages, ce sont de nouvelles pratiques de mobilités qui se dessinent au niveau mondial et de façon sous-jacente de nouveaux modèles économiques : ainsi les défis de demain ne sont pas tant la vente de véhicules que la vente de services de mobilités dans le cadre d’alliances entre constructeurs et opérateurs de mobilité. Il reste que tous les obstacles pour atteindre les plus hauts niveaux de l’automatisation (4 et 5) ne sont pas tous levés : ils peuvent être techniques mais aussi non techniques quand ils concernent l’acceptabilité individuelle, la compatibilité avec la réglementation et les questions de responsabilités en cas d’accident et l’indemnisation des victimes.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Cet article offert jusqu'au 31/12/2025
Consulter en libre accès

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-trp1012

CET ARTICLE SE TROUVE ÉGALEMENT DANS :

Accueil Ressources documentaires Technologies de l'information Réseaux Télécommunications Réseaux et télécoms : innovations et tendances technologiques Véhicule autonome et connecté - Technologies, enjeux et déploiement Architectures pour le véhicule autonome

Accueil Ressources documentaires Innovation Smart city - Ville intelligente et durable Mobilité et transports urbains Véhicule autonome et connecté - Technologies, enjeux et déploiement Architectures pour le véhicule autonome

Accueil Ressources documentaires Innovation Innovations technologiques Innovations en électronique et TIC Véhicule autonome et connecté - Technologies, enjeux et déploiement Architectures pour le véhicule autonome


Cet article fait partie de l’offre

Véhicule et mobilité du futur

(81 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

6. Architectures pour le véhicule autonome

Avec le développement des ADAS et des véhicules autonomes, l’électronique et l’informatique embarquées représentent plus de 30 % du coût total d’un véhicule. Les fonctions clés évoquées à la section précédente sont supportées par des composants implémentés par du matériel et/ou du logiciel. La façon dont on organise ces composants entre-eux constituent l’architecture électronique du véhicule.

À l’unique calculateur des années 1990, se substitue de nos jours une multitude d’unités de contrôle électroniques (ECU : Electronic Control Unit) reliées entre elles par des réseaux informatiques variés et dédiés : bus CAN ou Flexray pour les échanges de données inter-ECU, bus LIN pour le lien terminal entre ECU et certains types de capteurs, bus MOST pour les applications multimédia, etc.

Si Donal Knuth, un des pères de l’informatique moderne, a pu parler de l’art de la programmation des ordinateurs (The Art of Computer Programming), on peut sans crainte évoquer l’art du design de l’architecture embarquée et ce n’est pas par hasard si celles-ci sont très protégées par leurs concepteurs, raison pour laquelle on ne trouvera pas dans cet article de description d’architectures provenant des constructeurs. Seules sont décrites dans la littérature les architectures de véhicules prototypes développées dans le secteur de la recherche. Elles n’en sont pas pour autant dénuées d’intérêt et nous nous pencheront sur deux d’entre-elles dans cette section.

En revanche, les méthodes de conception sont très voisines d’un constructeur à l’autre, les différences se situant essentiellement au niveau des outils de représentation.

Les composants de l’architecture sont les capteurs, les actionneurs, les calculateurs (ECU), les interfaces et les bus de communication : l’art de la conception d’une architecture consiste à organiser de façon optimale ces composants pour réaliser les fonctions d’assistance à la conduite ou d’automatisation du véhicule.

6.1 Niveau « projet »

C’est dans les années 2000 que fut introduite la notion de plateforme ou de projet. En effet, dans un souci d’optimisation des coûts, on ne conçoit plus une architecture pour un seul véhicule mais pour une plateforme qui va se décliner en une multitude de modèles...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Cet article offert jusqu'au 31/12/2025
Consulter en libre accès

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Véhicule et mobilité du futur

(81 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Architectures pour le véhicule autonome
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - (*) -   Review of the history of interest in fully automated vehicles and highways.  -  http://onlinepubs.trb.org/onlinepubs/sr/sr253/sr25302.pdf

  • (2) - SAE International -   Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles.  -  (2016). https://www.sae.org/standards/content/j3016_201806/

  • (3) - UK DEPARTMENT OF TRANSPORT -   Research on the impacts of connected and autonomous vehicles (cavs) on traffic flow.  -  Summary Report, ATKINS (2016).

  • (4) - GRUYER (D.) et al -   Are Connected and Automated Vehicles the silver bullet for future transportation challenges? Benefits and weaknesses on Safety, Consumption, and Traffic congestion.  -  À paraître chez Frontiers (2021).

  • (5) - COHEN (S.) -   Systèmes et méthodes de détection automatique d’incident des incidents routiers.  -  coll. INRETS, ISSN : 0769-0274, ISBN : 2-85782-615-X (2005).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Cet article offert jusqu'au 31/12/2025
Consulter en libre accès

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Véhicule et mobilité du futur

(81 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS