Présentation
En anglaisAuteur(s)
-
Nicola PICCIRELLI : Docteur ès Science et Génie des Matériaux - Responsable Décors Matières Innovation - Direction de l'Ingénierie Equipements de Carrosserie - Renault
-
Alain GIOCOSA : Consultant - Ex-Chef du Service Matériaux Polymères et Composites et Mise en Œuvre - Direction de l'Ingénierie des Matériaux - Renault
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Si à ses débuts, il y a plus d'une centaine d'années, une automobile était constituée principalement de bois et d'acier, aujourd'hui elle rassemble de nombreux matériaux appartenant aux grandes familles suivantes :
-
matériaux ferreux : fontes, aciers, tôles (environ 62 % de sa masse) ;
-
matériaux non ferreux : aluminium (fonte et tôle), cuivreux, magnésium (environ 9 %) ;
-
matériaux minéraux : verre, céramique (environ 4 %) ;
-
matériaux organiques : environ 25 %, répartis en moyenne de la manière suivante :
-
4 % : élastomères,
-
6 % : peintures, adhésifs, textiles, fluides,
-
15 % : matériaux plastiques, thermoplastiques (TP) ou thermodurcissables (TD).
-
Selon les véhicules, ces 15 % peuvent varier de 10 à 20 % et se répartir dans les différentes fonctions constitutives d'un véhicule de la manière suivante :
-
équipement intérieur ou habitacle : 50 %,
-
applications extérieures : 30 à 35 %,
-
pièces sous capot : 15 %,
-
pièces de structure : 0 à 5 %.
À noter que le pourcentage d'utilisation des matériaux plastiques n'a cessé de croître depuis le milieu des années 50/60, il était de 6 % dans les années 60/70.
Aujourd'hui, en moyenne 15 % pour un véhicule moyen de 1 300 kg, cela représente environ 200 kg / véhicule de « matériaux plastique ».
Cette évolution est due au fait que le choix d'un matériau donné pour une application donnée oblige à une confrontation de solutions afin de rechercher le meilleur couple matériau/procédé de fabrication d'une pièce en tenant compte de nombreux critères : des critères techniques et industriels liés à la capacité et à la disponibilité des moyens industriels, des critères économiques liés au coût des matériaux et aux coûts de production et enfin des critères sociaux guidant les orientations des choix du client final.
Les matériaux composites sont apparus dans l'industrie automobile au milieu des années 1950. À cette époque, les matériaux et les procédés de transformation étaient peu nombreux : essentiellement des matrices polyesters thermodurcissables renforcées par des fibres de verre courtes, mises en œuvre manuellement dans des moules ouverts ou fermés suivant le procédé SMC (Sheet Moulding Compound).
Au XXIe siècle, de nombreux matériaux et procédés de transformation sont à la disposition des concepteurs.
Les matrices peuvent être thermoplastiques (polypropylène, polyamide, polyuréthanne,....) ou thermodurcissables (polyester, vinylester, époxy, polydicyclopentadiène,....).
Les fibres de renforcement peuvent être en verre, aramide, carbone, thermoplastique, voire végétales, utilisées sous forme coupée courte ou longue, continue, tissée, tressée, tricotée......
Selon le type de matrices utilisées, TP ou TD, les procédés de mise en œuvre sont très variés :
-
injection (RTM – Resin Transfer Moulding, BMC-Bulk Moulding Compound, RIM – Reaction Injection Moulding) ;
-
compression et formage (SMC – Sheet Moulding Compound, GMT – Glass Mat Thermoplastic, TRE – Thermoplastique Renforcé Estampable) ;
-
pultrusion ;
-
enroulement filamentaire ;
-
infusion sous vide.
Les procédés en moules fermés et l'utilisation de résines contenant peu de styrène sont aujourd'hui privilégiés afin de réduire les émissions de composés volatils dans les ateliers (pour le styrène la limite maximale est de 20-200 ppm, voire 20-25 ppm dans certains pays).
VERSIONS
- Version archivée 1 de avr. 1999 par Alain GIOCOSA
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Matériaux > Plastiques et composites > Applications des composites > Les composites dans l'industrie automobile > Limites d'utilisation
Accueil > Ressources documentaires > Génie industriel > Métier : responsable bureau d’étude/conception > Matériaux à propriétés mécaniques > Les composites dans l'industrie automobile > Limites d'utilisation
Accueil > Ressources documentaires > Matériaux > Matériaux fonctionnels - Matériaux biosourcés > Matériaux à propriétés mécaniques > Les composites dans l'industrie automobile > Limites d'utilisation
Cet article fait partie de l’offre
Véhicule et mobilité du futur
(80 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Limites d'utilisation
Le développement des matériaux composites, et particulièrement ceux potentiellement utilisables dans des applications structurelles, est encore limité. Les bureaux d'études et les concepteurs de véhicules restent confrontés à des difficultés liées aux matériaux, aux procédés de fabrication des pièces, aux procédés d'assemblage sur les véhicules, à leurs approches culturelles et aux réglementations environnementales.
5.1 Freins liés aux matériaux
Les caractéristiques physiques des matériaux mentionnées dans les bases de données ne sont pas suffisamment fiables et représentatives pour être exploitables dans les logiciels de simulation de nouvelles applications, et ce particulièrement pour les nouveaux matériaux mis sur le marché. Ainsi, les caractéristiques mécaniques à grande vitesse de bon nombre de matériaux composites font encore cruellement défaut.
Les lois de comportement des matériaux et les logiciels de simulation ne présentent pas encore une fiabilité comparable à celle des métaux. De ce fait, les validations nécessitent trop souvent le passage par la réalisation de prototypes et de nombreux essais de validation sur pièces, d'où des surcoûts et un allongement des délais de mise au point.
le comportement en fatigue, l'endommagement et les déformations lors des chocs à grande vitesse sont délicats à simuler de façons représentatives et fiables.
Les stabilités dimensionnelle et chimique, la durabilité et le vieillissement restent difficiles à prévoir et font craindre des défaillances durant la vie des véhicules dans des ambiances chaudes et humides. Les mesures effectuées sur éprouvettes ne sont pas toujours représentatives statistiquement de l'hétérogénéité et du comportement des pièces.
Les modes d'assemblage, souvent le collage, sont nouveaux et présentent les mêmes difficultés que celles décrites pour les matériaux.
La fourniture de matériaux disponibles, à des prix stables sur tous les sites de fabrication à l'échelle mondiale, n'est pas toujours garantie et n'assure pas un suivi et une constance de qualité excluant toute dérive.
La gestion des rebuts et la recyclabilité des véhicules en fin de vie restent problématiques...
Cet article fait partie de l’offre
Véhicule et mobilité du futur
(80 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Limites d'utilisation
BIBLIOGRAPHIE
-
(1) - LECOINTRE Eric - Étude économique sur la filière de traitement des véhicules hors d'usage - . Rapport final. http://www.ademe.fr
-
(2) - SHEN Lie, HAUFE Juliane, PATEL Martin K. - Product overview and market projection of emerging bio-based plastics - . Final Report (June 2009). http://www.europeanbioplastics.org et http://www.epnoe.eu
-
(3) - MICHOT Nicolas et RENAULT Thierry. Faurecia - Sièges automobiles : allégement et intégration de fonctions - . Congrès SFIP « Composites et Polymères à haut module ». Douai (9/10 juin 2010)
-
(4) - ROBERTS Tony - The carbon fibre industry. - Global strategic market evaluation 2006-2010. http://www.mat-tech.co.uk
DANS NOS BASES DOCUMENTAIRES
-
Projet Mosaïc : structure automobile en composites et aluminium
-
Mise en œuvre des composites. Méthodes et matériels
-
Matériaux composites : présentation générale
-
Les composites en aérospatiale
-
Collage des composites : constructions aérospatiale, automobile et ferroviaire
-
Collage des composites – Secteurs routier et ferroviaire
-
...
ANNEXES
CAMPUS Version 5.2 – Base de données de fournisseurs de matériaux plastiques.
HAUT DE PAGE
ANTEC (SPE Annual Technical Conference) http://www.4spe.org
JEC Composites show http://www.jeccomposites.com
Congrès SFIP « Composites et Polymères à haut module ». Douai (9/10 juin 2010) http://www.sfip-plastic.org
HAUT DE PAGE
ISO 14 062 – Généralités sur l'éco-conception
ISO 14 040...
Cet article fait partie de l’offre
Véhicule et mobilité du futur
(80 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive