Présentation
En anglaisRÉSUMÉ
L’hydrogène apparaît aujourd’hui comme une bonne alternative aux énergies fossiles dont nous sommes très dépendants. Cependant, sa production, son stockage, sa distribution et son utilisation sont soumises à de multiples contraintes. Bien que l’association des énergies renouvelables à l’hydrogène via le Power to Gas se révèle être une alternative intéressante, des progrès aux niveaux de chaque étape de la filière sont nécessaires et plusieurs verrous technico-économiques doivent être levés avant de pouvoir utiliser de manière performante et réaliste cette source d’énergie.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Currently, hydrogen appears as a promising alternative to fossil resources upon which we are dependent. However, its production, storage, supplying and use are subject to several constraints. Although Power to gas technology represents an interesting alternative, progresses dealing with each steps of the hydrogen network have to be performed and techno-economic barriers have to be knocked down before using efficiently this energy source
Auteur(s)
-
Johnny DESCHAMPS : Professeur Unité chimie et procédés (UCP) École nationale supérieure de techniques avancées (ENSTA ParisTech), Palaiseau, France
INTRODUCTION
Actuellement, les énergies renouvelables sont une alternative des plus prometteuses pour faire face à la raréfaction future des combustibles fossiles conventionnels et aux effets des émissions de gaz à effet de serre. Cependant, dans l’état actuel des connaissances, chaque ressource (solaire, vent, hydraulique, géothermique, biomasse) est encore soumise aux contraintes technologiques et la plus importante d’entre elles est l’intermittence. Pour contourner ce problème, le développement et l’utilisation de vecteurs énergétiques semblent être une solution appropriée et parmi les vecteurs d’énergie connus, l’hydrogène semble être le candidat idéal dans la mesure où il permet de stocker massivement de l’énergie pendant de longues périodes de temps. Cette énergie stockée peut être alors employée dans une large variété de systèmes comme la mobilité, la chaleur ou des processus industriels. De plus, il n’a aucun impact sur l’empreinte carbone et sa combustion avec l’oxygène produit seulement de l’eau.
L’hydrogène (H2) apparaît alors comme une solution « miracle » pour réduire notre dépendance aux ressources fossiles. Cependant, 95 % de l’hydrogène est actuellement produit par vaporeformage du gaz naturel! Il est donc nécessaire de le produire par d’autres techniques faisant appel à des sources d’énergie renouvelables de types eau, biomasse, soleil et vent.
L’hydrogène produit peut être utilisé dans le cadre d’applications mobiles ou stationnaires en utilisant des piles à combustible ou par combustion directe. Cependant, ces technologies ne sont pas encore optimales d’un point de vue technico-économique et, à cela s’ajoute le problème de sa distribution qui doit être aussi développée et optimisée afin de répondre aux besoins. De plus, son utilisation dépend fortement de son stockage qui représente actuellement un problème crucial, particulièrement pour la mobilité et les applications embarquées. Actuellement, seulement deux techniques de stockage d’hydrogène embarqué sont disponibles : le stockage liquide à basse température et le stockage sous haute pression. Cependant, ces conditions de température et de pression sont extrêmes (20 K et 70,0 MPa) et un moyen alternatif de stockage à températures et pressions modérées doit être développé. Dans cette optique, le stockage solide de l’hydrogène est reconnu comme une option prometteuse. Néanmoins, des progrès en recherche fondamentale sont encore nécessaires afin de mieux comprendre le potentiel de cette technologie et de pouvoir l’exploiter.
Finalement, en raison de ses propriétés énergétiques intrinsèques, l’hydrogène apparaît alors comme une solution prometteuse pour résoudre les futurs problèmes énergétiques de la société, mais, avant que cela soit possible, des progrès concernant sa production, son stockage, sa distribution et son utilisation sont primordiaux. Dans cet article, les différentes techniques et technologies utilisées aujourd’hui pour produire, stocker, distribuer et utiliser l’hydrogène sont présentées. Les verrous technico-économiques associés aux différentes étapes de la filière seront alors mis en avant afin d’avoir une vue d’ensemble de l’utilisation de l’hydrogène par rapport à la filière dans son intégralité. Enfin, l’intérêt du Power to Gas pour la filière hydrogène sera discuté et les avantages technico-économiques et environnementaux seront présentés et illustrés par des projets nationaux actuellement en cours.
KEYWORDS
energy storage | Renewable energies | hydrogen | power to gas
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Énergies > Ressources énergétiques et stockage > Stockage de l'énergie > Filière hydrogène : principaux verrous et intérêt du Power to Gas > Conclusion
Accueil > Ressources documentaires > Énergies > Hydrogène > Utilisation et valorisation de l'hydrogène > Filière hydrogène : principaux verrous et intérêt du Power to Gas > Conclusion
Cet article fait partie de l’offre
Véhicule et mobilité du futur
(79 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Conclusion
L’utilisation d’un vecteur énergétique tel que l’hydrogène semble être une bonne alternative à notre dépendance actuelle aux énergies fossiles et à l’intermittence des énergies renouvelables. Il permet de stocker massivement de l’énergie pendant de longues périodes de temps et cette énergie stockée peut être alors utilisée dans une large variété de systèmes comme la mobilité, la chaleur ou des procédés industriels. De plus, il n’a aucun impact sur l’empreinte carbone et sa combustion avec l’oxygène produit seulement de l’eau. Cependant, avant que cela soit envisageable, des progrès sont nécessaires à chaque étape de la filière hydrogène et de multiples verrous technico-économiques devront être levés.
Au niveau de la production, 95 % de l’hydrogène est actuellement produit par vaporeformage du gaz naturel. Cette technique s’avère être la plus rentable (4 fois moins cher que l’électrolyse) mais outre le fait qu’elle nécessite une source fossile, elle est très polluante de par ses importants rejets de dioxyde de carbone.
L’hydrogène produit peut être utilisé dans le cadre d’applications mobiles ou stationnaires en utilisant des piles à combustible ou par combustion directe. Cependant, son utilisation dépend fortement de son stockage qui représente actuellement un problème crucial, particulièrement pour la mobilité et les applications embarquées. Actuellement, seules deux techniques de stockage d’hydrogène embarqué sont disponibles : le stockage liquide à basse température et le stockage sous haute pression. Cependant ces conditions de température et de pression sont extrêmes (20 K et 70,0 MPa) et un moyen alternatif de stockage à températures et pressions modérées doit être développé. Dans cette optique, le stockage d’hydrogène solide par adsorption semble une option prometteuse. Néanmoins, des progrès en recherche fondamentale sont encore nécessaires afin de mieux comprendre le potentiel de cette technologie et de pouvoir l’exploiter.
Dans le cadre des utilisations à caractère énergétique de l’hydrogène les différents types de pile à combustible (haute et basse température) démontrent des potentialités fortes cependant des verrous majeurs comme leur prix et leur durée de vie doivent être encore levés. Similairement, quelques démonstrateurs de...
TEST DE VALIDATION ET CERTIFICATION CerT.I. :
Cet article vous permet de préparer une certification CerT.I.
Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.
de Techniques de l’Ingénieur ! Acheter le module
Cet article fait partie de l’offre
Véhicule et mobilité du futur
(79 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusion
BIBLIOGRAPHIE
-
(1) - AFHYPAC - Production d’hydrogène à partir des combustibles fossiles. - Memento de l’Hydrogène, Fiche 3.1.1 (2014).
-
(2) - BOURBONNEUX (G.) - Production d’hydrogène. - In Procédés de transformation, LEPRINCE (P.), Technip (1998).
-
(3) - ZUTTEL (A.), BORGSCHULTE (A.), SCHLAPBACH (L.) - Hydrogen as future energy carrier. - Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim (2008).
-
(4) - WURSTER (R.), SCHLINDER (R.) - Solar and wind energy coupled with electrolysis and fuel cells. - In Handbooks of Fuel Cells-Fundamentals, Technology and Applications, eds VIELSTICH (W.), GASTEIGER (H.A.), LAMM (A.), John Wiley and Sons Ltd, Chichester, New York (2003).
-
(5) - BESSARABOV (D.), MILLET (P.) - PEM water electrolysis volume 1. - Academic Press (2018).
-
(6) - GHOSH...
DANS NOS BASES DOCUMENTAIRES
Cet article fait partie de l’offre
Véhicule et mobilité du futur
(79 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE
1/ Quiz d'entraînement
Entraînez vous autant que vous le voulez avec les quiz d'entraînement.
2/ Test de validation
Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.
Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.
Cet article fait partie de l’offre
Véhicule et mobilité du futur
(79 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive