Présentation
En anglaisAuteur(s)
-
Paul-Eric DUPUIS : Docteur de l'École nationale supérieure de l'aéronautique et de l'espace - Responsable du département Essais mécaniques à la société Intespace
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Les vibrations font partie intégrante de notre univers. Le moindre mouvement entraîne des vibrations d'amplitude et de durée variables, depuis l'oscillation lente d'un pont suspendu excité par le vent jusqu'au choc engendré à l'atterrissage par un avion, en passant par le bruit des moteurs de nos voitures. Cet environnement vibratoire est ressenti par l'ensemble des équipements que nous utilisons dans la vie courante et peut engendrer des dysfonctionnements allant jusqu'à la destruction du matériel en question.
C'est ainsi qu'est né le besoin de certifier les structures au travers d'une série d'essais représentatifs de l'environnement vibratoire rencontré par un produit au long de son cycle de vie. La grande diversité des situations rencontrées engendre un large éventail d'essais de nature très différente, ce qui oblige l'opérateur d'un essai de vibrations à utiliser un matériel de mesure tout aussi diversifié.
Le but de cet article est de permettre au néophyte de comprendre quels sont les éléments importants à prendre en compte dans le choix du matériel de mesure, puis, à partir des résultats obtenus, comment les exploiter en évitant les pièges d'une mauvaise interprétation.
Pour cela, après un bref rappel de quelques principes de dynamique des structures, les différents types d'essais de vibrations sont évoqués de manière à mettre en évidence leurs spécificités tant dans les paramètres de mesure que dans le traitement des résultats.
Les différents constituants d'une chaîne d'acquisition sont ensuite détaillés car il est nécessaire de comprendre les avantages et les inconvénients des divers matériels pour faire un choix adapté. L'interprétation des résultats de mesure est une étape indispensable car on ne peut exploiter que ce que l'on sait interpréter.
À titre d'information, la chronologie d'un essai de vibrations est retracée, ce qui permet de restituer chaque étape dans un cadre concret.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Mécanique > Fonctions et composants mécaniques > Mécanique des éléments tournants > Essais de vibrations - Mesures et exploitation des résultats > Interprétation des mesures
Cet article fait partie de l’offre
Bruit et vibrations
(97 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Interprétation des mesures
4.1 Incertitude sur les mesures
L'exploitation des mesures effectuées par un opérateur n'est possible que si l’on peut en faire une interprétation correcte, c'est-à-dire s'il est possible d'exprimer la grandeur voulue avec une précision connue et satisfaisante.
Il est pour cela important de pouvoir retrouver les conditions exactes dans lesquelles a été effectué l'essai, afin d'identifier les sources d'erreur. Une mesure n'est, en effet, jamais parfaitement reproductible car elle dépend d'un ensemble de paramètres généraux tels que la température ou la pression atmosphérique, mais aussi de paramètres relatifs aux matériels nécessaires à l'exécution de l'essai tels que la corrosion, la fatigue ou le fluage, pour ne citer que ces exemples.
D'un point de vue strictement mathématique, l'erreur maximale sur le modèle F dépendant de n variables indépendantes ai , dont les incertitudes peuvent être assimilées à des infiniment petits du premier ordre, s'écrit :
La difficulté reste d'identifier ces incertitudes avec précision. Leur identification permet de :
-
les quantifier afin de préciser l'incertitude totale sur la mesure ;
-
les éliminer quand cela est possible en vue d'assurer la répétitivité de la mesure ou encore d'améliorer la sûreté de fonctionnement ou l'optimisation d'un processus.
Il est important de noter que, dans une chaîne de mesure, les incertitudes des différents matériels sont généralement décorrellées les unes des autres et peuvent donc être sommées quadratiquement.
II est possible de distinguer trois natures d'erreurs de mesures :
-
l'erreur systématique : un exemple typique est la dérive dans le temps de la sensibilité d'un capteur. Ce défaut est visible de manière flagrante en basse fréquence, lorsque le matériel a un comportement de corps rigide et qu'un capteur ne donne pas la même information que les autres. La seule réponse acceptable de l'opérateur devant ce type d'erreur est le renvoi du matériel défectueux au service d'étalonnage.
-
l'erreur parasite : elle est définie dans la norme NF X 07-001...
Cet article fait partie de l’offre
Bruit et vibrations
(97 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Interprétation des mesures
BIBLIOGRAPHIE
-
(1) - IMBERT (J.-F.) - Analyse des structures par éléments finis - , 3e édition, Cepadues (1991).
-
(2) - GIRARD (A.) - Dynamique des structures. Techniques d’analyse et d’essais B 5 150 - . Techniques de l’Ingénieur, traité Génie mécanique (1997).
-
(3) - GIRARD (A.), DUPUIS (P.-E.) , BUGEAT (L.-P.) - Improved schock characterization - . European Conference on Spacecraft Structures, Materials and Mechanical Testing, Braunsghweig, Allemagne (4-6 novembre 1998).
-
(4) - DUPUIS (P.-E.) - Recalage et optimisation de modèles éléments finis en dynamique avec amortissement - . Thèse de doctorat de l’École nationale supérieure de l’aéronautique et de l’espace, Toulouse (juin 1992).
-
(5) - BENDAT (J.-S.), PIERSOL (A.G.) - Random Data : analysis and measurement procedures - . John Wiley & Sons (1971).
-
...
DANS NOS BASES DOCUMENTAIRES
-
*
-
Capteurs
-
Capteurs à fibres optiques. Techniques de l’Ingénieur
-
Mise en œuvre des procédés électroniques dans les techniques de mesure
NORMES
-
Normes fondamentales. Vocabulaire international des termes fondamentaux et généraux de métrologie - NF X 07-001 - 12.1994
-
Relations clients - fournisseurs. Qualité des essais. Lignes directives pour demander et organiser des essais. - NF X 50-142 - 12.1990
-
Recueils de normes françaises « Chocs et vibrations mécaniques » 3e éd. - NF X 50-142 - 1987
-
Recueils de normes françaises « Essais et analyses. Maîtriser la conception et la réalisation ». - NF X 50-142 - 1998
-
Annexe : Traitement du signal. - GAM-EG-13 - 11.1995
ANNEXES
Les caractéristiques de quelques capteurs commerciaux courants sont données dans les tableaux , et .
HAUT DE PAGECet article fait partie de l’offre
Bruit et vibrations
(97 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive