Présentation
EnglishRÉSUMÉ
Les systèmes nanoporeux lyophobes, utilisables comme accumulateurs hydrauliques, s’apparentent à des anti-éponges. Les matériaux nanoporeux, employés comme anti-éponges, sont présentés dans cet article qui vise plus largement à décrire le principe de fonctionnement des systèmes nanoporeux lyophobes et les mécanismes physiques qui leurs sont sous-jacents. L’article s’attache par ailleurs à comparer les systèmes nanoporeux lyophobes aux solutions de stockage et de conversion d’énergie actuelles, de façon à établir leurs points forts et leur limitations. Les aspects exploratoires et perspectives en vue de futures améliorations sont également abordés.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Cyril PICARD : Maître conférences à l’université Grenoble-Alpes - Laboratoire interdisciplinaire de Physique, Grenoble, France
INTRODUCTION
Le développement de nouveaux matériaux nanoporeux de grande surface spécifique permet aujourd’hui l’essor de nouveaux modes de stockage d’énergie. Ainsi, l’adsorption de gaz au sein de matériaux nanoporeux ouvre de nouvelles perspectives aussi bien pour le stockage d’énergie chimique, par fixation réversible d’une espèce telle que l’hydrogène, que pour le stockage d’énergie thermique associée à la chaleur d’adsorption exothermique et de désorption endothermique. Dans ce contexte, les systèmes nanoporeux lyophobes tirent profit des matériaux nanoporeux pour le stockage d’énergie mécanique. L’énergie est stockée par intrusion forcée d’un liquide non mouillant dans un matériau nanoporeux et restituée par expulsion spontanée du liquide sous pression hors des pores. Cette approche originale permet de convertir de l’énergie hydraulique en énergie interfaciale de manière directe et réversible. La pression est fixée par le couple liquide/nanoporeux employé et s’avère peu dépendante à la fois du taux de remplissage de la matrice en liquide et de la durée de l’intrusion ou de l’extrusion. Ces systèmes permettent ainsi un transfert rapide d’énergie avec une densité de puissance plus d’un ordre de grandeur supérieure à celle des solutions de stockage actuelles.
Après avoir précisé le principe de fonctionnement des systèmes nanoporeux lyophobes, seront détaillées les caractéristiques des matériaux nanoporeux employés pour les réaliser. L’article vise ensuite à présenter le potentiel de ces nouveaux systèmes pour le stockage et la conversion d’énergie en les plaçant en regard des solutions de stockage d’énergie disponibles à ce jour. Les mécanismes physiques à l’œuvre au sein des nanopores, à l’origine du comportement spécifique des systèmes nanoporeux lyophobes, sont alors abordés. L’article dresse pour finir un panorama des défis à relever en vue du développement de ces systèmes.
Domaine : Technique pour le stockage et la conversion d’énergie
Degré de diffusion de la technologie : Émergence
Technologie impliquée : Technologie des systèmes hydrauliques
Domaine d’application : Actionneurs, stockage d’énergie à haute densité de puissance, récupération d’énergie au freinage
Principaux acteurs français : Université Blaise Pascal, Université Grenoble-Alpes, Université de Haute-Alsace.
Autres acteurs dans le monde : National University of Ukraine, Fukuoka Institute of Technology, University of California San Diego
Contact : [email protected]
MOTS-CLÉS
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Innovation > Innovations technologiques > Innovations en énergie et environnement > Accumulateurs à nanoporeux lyophobes > Systèmes hétérogènes fluide/solide
Accueil > Ressources documentaires > Innovation > Innovations technologiques > Innovations en matériaux avancés > Accumulateurs à nanoporeux lyophobes > Systèmes hétérogènes fluide/solide
Accueil > Ressources documentaires > Innovation > Nanosciences et nanotechnologies > Nanotechnologies pour l'énergie, l'environnement et la santé > Accumulateurs à nanoporeux lyophobes > Systèmes hétérogènes fluide/solide
Accueil > Ressources documentaires > Sciences fondamentales > Nanosciences et nanotechnologies > Nanotechnologies pour l'énergie, l'environnement et la santé > Accumulateurs à nanoporeux lyophobes > Systèmes hétérogènes fluide/solide
Cet article fait partie de l’offre
Métier : responsable environnement
(358 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Systèmes hétérogènes fluide/solide
L’énergie stockée dans les systèmes nanoporeux lyophobes est de même nature que celle stockée aux interfaces d’un film liquide, lors de la création d’une bulle de savon par exemple. Il s’agit ici de démultiplier l’aire interfaciale en formant des interfaces liquide/solide de grande superficie au sein de matériaux nanoporeux. Nous commencerons par préciser la terminologie employée pour désigner ces matériaux.
Pour aboutir à une conversion directe d’énergie hydraulique en énergie mécanique interfaciale et inversement, les systèmes nanoporeux lyophobes exploitent deux effets combinés à savoir d’une part une forte lyophobie (ou faible affinité du fluide pour le solide) et d’autre par un effet de confinement. Nous nous intéresserons à ces deux effets, étroitement liés au concept d’interface et au phénomène de capillarité (voir les articles [K475] et [J2140]).
2.1 Structures nanoporeuses
Les matériaux nanoporeux constituent un pont entre les échelles nano et macro. Constitués d’une multitude de pores nanométriques, ces matériaux permettent de concevoir des applications macroscopiques qui reposent sur le comportement de fluides confinés. Un pore est généralement une cavité ou un canal nettement plus profond que large, avec un rapport d’aspect pouvant être supérieur à 1000. Les pores peuvent être débouchants ou au contraire fermés, être interconnectés ou indépendants (figure 1 a ). Les matériaux nanoporeux sont généralement constitués d’un ensemble...
Cet article fait partie de l’offre
Métier : responsable environnement
(358 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Systèmes hétérogènes fluide/solide
BIBLIOGRAPHIE
-
(1) - Di RENZO (F.) et al - Textural control of micelle-templated mesoporous silicates : the effects of co-surfactants and alkalinity, - Microporous Mesoporous Mater. 28, p. 437-446 (1999).
-
(2) - BABIN (J.) et al - MCM-41 silica monoliths with independent control of meso- and macroporosity, - New J. Chem. 31.11, p. 1907. doi : 10.1039/b711544j (2007).
-
(3) - ISRAELACHVILI - Intermolecular and Surface Forces. - doi : 10.1017/CBO9781107415324.004 (2011).
-
(4) - BRÉCHIGNAC (C.), HOUDY (P.), LAHMANI (M.), éds - Nanomaterials and nanochemistry - (2013).
-
(5) - DAÏAN (J.F.) - Équilibre et transferts en milieux poreux - (2013).
-
(6) - FADEV (A.Y.), EROSHENKO (V.) - Study of Penetration of Water into Hydrophobized...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Pierre Odru. Stockage de l’énergie. 2016. url : http://www.techniques-ingenieur.fr/actualite/conferences-en-ligne/stockage-de-lenergie/.
Data Base of Zeolite Structures : http://www.iza-structure.org/databases/.
ZEOMICS (Zeolites and Microporous Structures Characterization) : http://helios.princeton.edu/zeomics/.
MOFomics (Metal-Organic Frameworks Characterization) : http://helios.princeton.edu/mofomics/.
HAUT DE PAGE
Valentin Eroshenko. Hydrocapillary accumulator, F15B1/04 (1980).
Valentin Eroshenko. Heterogeneous structure for accumulating or dissipating energy, method of using such a structure and associated divices, WO9618040 (1996).
Galaitsis. Heterogeneous Lyophobic system for accumulation, retrieval and dissipation of energy, US2006/0246288 (2006).
Yu Qiao. Nanoporous materials for use in the conversion of mechanical energy and/or thermal energy into electrical energy, US 2009/0243428 A1 (2009).
Michel Soulard et Joël Patarin. Process for high-pressure energy storage by solvation/desolvation and associated storage device, WO2012164218 A1 (2012).
Valentin Eroshenko. Vitually oil-free shock absorber having high dissipative capacity, PCT/EP2011/065488 (2013).
HAUT DE PAGECet article fait partie de l’offre
Métier : responsable environnement
(358 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive