Présentation
EnglishRÉSUMÉ
Cet article traite des moyens qu’il faudra mettre en œuvre pour satisfaire l’Accord de Paris adopté en 2016 par la majorité des pays du Monde, à savoir la limitation à 1,5 °C en 2100 du réchauffement climatique de la planète. Cet objectif impose de réduire drastiquement les émissions de CO2 issues de l’utilisation des combustibles fossiles et de les remplacer par un vecteur d’énergie renouvelable qui ne conduise pas à l’émission de CO2, à savoir l’hydrogène. Les conséquences d’un tel choix sont passées en revue, tant du point de vue de sa production que de celui de sa mise en œuvre et de son utilisation.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Thierry ALLEAU : Président d’Honneur - Association Française pour l’Hydrogène et les Piles à Combustible, Paris, France
INTRODUCTION
C’est en 1972 que la Conférence de Stockholm, réunie sous l’égide des Nations Unies, a placé pour la première fois la dégradation de l’environnement, due aux émissions excessives de gaz à effet de serre tels que le CO2, comme préoccupation internationale. En 1997, la plus grande partie des pays industrialisés (sauf les États-Unis) signe le protocole de Kyoto par lequel ils s’engagent à une baisse de 5 % des gaz à effet de serre par rapport à 1990. Or, le taux de CO2 dans l’atmosphère en 1990 était voisin de 360 ppm ...il dépasse aujourd’hui 410 ppm ! Cet échec est la cause, la plus communément acceptée, du changement climatique observé ces dernières décennies, lequel dérèglement a déjà de lourdes conséquences sur l’environnement.
Ce constat négatif a conduit à un nouvel accord : l’accord de Paris, ratifié en octobre 2016 par 174 pays et l’Union européenne. Cet accord a pris pour objectif principal de contenir la hausse de la température moyenne, par rapport aux niveaux préindustriels, bien au-dessous de 2 °C, et la limiter autant que possible à 1,5 °C, objectif très ambitieux qui exige de réduire de manière intensive les émissions de CO2. Or, ces émissions proviennent essentiellement de l’utilisation des combustibles fossiles, sources d’énergie incontournables jusqu’ici, qui satisfont 80 % des besoins énergétiques mondiaux. L’équation devient donc simple à poser, si ce n’est à résoudre : il faut baisser de manière drastique la consommation des combustibles fossiles, émetteurs de CO2, dont nous avons déjà consommé, en moins de deux siècles, la moitié des réserves initiales alors qu’il reste plus de 4 milliards d’années de vie à la Terre ! Donc, devoir abandonner progressivement les énergies fossiles carbonées devient une nécessité et c’est devoir les remplacer en grande partie par les énergies renouvelables inépuisables à l’échelle de la vie sur Terre, à savoir essentiellement celles fournies par la machine solaire. La question reste donc de savoir si cette vision est réaliste et comment alors les mettre en œuvre et les transformer pour aboutir à des sources d’énergie aussi sûrement et facilement utilisables que les combustibles fossiles.
PPE : Programmation Pluriannuelle de l’Énergie
FCH-JU : Fuel Cells and Hydrogen Join Undertaking
GNL : Gaz Naturel Liquéfié
TICPE (ex TIPP) : Taxe Intérieure de Consommation sur les Produits Énergétiques
FCHEA : Fuel Cell and Hydrogen Energy Association
AFHYPAC : Association Française pour l’Hydrogène et les Piles à Combustible
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Énergies > Ressources énergétiques et stockage > Conversion et transport d'énergie > L’hydrogène, vecteur de la transition énergétique > Applications énergétiques de l’hydrogène
Accueil > Ressources documentaires > Procédés chimie - bio - agro > Chimie verte > Énergie durable et biocarburants > L’hydrogène, vecteur de la transition énergétique > Applications énergétiques de l’hydrogène
Cet article fait partie de l’offre
Hydrogène
(48 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Applications énergétiques de l’hydrogène
Les applications actuelles de l’hydrogène se situent autour de ses caractéristiques chimiques ; elles sont multiples : industries chimiques et pétrochimiques, métallurgie, engrais... mais les applications autour de ses qualités énergétiques sont encore peu développées et ce sont celles qui sont visées. On peut les résumer en imaginant substituer tous les combustibles fossiles gazeux ou liquides par de l’hydrogène... c’est dire l’étendue du domaine des applications possibles !
Une fois produit l’hydrogène peut être utilisé de deux façons différentes : soit directement comme combustible, soit indirectement en le recombinant avec de l’oxygène (de l’air généralement) pour produire de l’électricité via une pile à combustible. Il est clair que pour une question d’efficacité l’utilisation directe doit être privilégiée mais quand l’utilisation ne s’y prête pas, dans le cas des applications liées à la mobilité en particulier, le passage par une pile à combustible est incontournable mais au prix d’une perte d’énergie de l’ordre de 50 %, directement liée au rendement de la conversion.
4.1 Applications directes
La situation de la France sur le plan énergétique est un peu particulière dans la mesure où la production d’électricité, majoritairement d’origine nucléaire (environ 80 %), est légèrement excédentaire en termes de bilan annuel. Cet excédent est revendu à d’autres pays européens auxquels de l’électricité est achetée à certaines périodes. La volonté de limiter les émissions de gaz à effet de serre conduit la France à développer la production des énergies renouvelables, donc la production d’électricité. Il est alors nécessaire :
-
soit de développer davantage l’usage de l’électricité quand on peut basculer d’une autre forme d’énergie fossile à l’utilisation d’une source électrique ; mais cette solution a ses limites car le renforcement du réseau électrique que cela implique aura un coût important ;
-
soit de convertir partiellement cette électricité en hydrogène dont la plus grande partie sera injectée dans le réseau de gaz ...
Cet article fait partie de l’offre
Hydrogène
(48 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Applications énergétiques de l’hydrogène
BIBLIOGRAPHIE
-
(1) - Le baromètre 2019 des énergies renouvelables électriques en France, Observ’ER - http://www.energies-renouvelables.org
-
(2) - Hydrogen Economy Outlook - , mars 2020 https://data.bloomberglp.com
-
(3) - The Fuel Cell Hydrogen Observatory (FCHO) - http://www.fchobservatory.eu
-
(4) - AFHYPAC – Association Française pour l’hydrogène et les Piles à Combustible - , Tout savoir sur.... http://www.afhypac.org
-
(5) - Mémento sur l’Énergie - , CEA Édition 2018 http://www.cea.fr
-
(6) - Les scénarios mondiaux de l’énergie à l’horizon 2050, World Energy Council - https://www.worldenergy.org
-
...
Cet article fait partie de l’offre
Hydrogène
(48 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive