Présentation
En anglaisAuteur(s)
-
Bernard CLAUDEL : Professeur au département de Génie énergétique de l’Institut national des sciences appliquées de Lyon (INSA)
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Le but de cet article est de donner les bases sur lesquelles se fondent les propriétés thermodynamiques des fluides et les applications pratiques qui en découlent. Un premier paragraphe rappelle les trois principes de la thermodynamique macroscopique, ainsi que les définitions des grandeurs fondamentales caractérisant un système soit à constituant unique, soit à constituants multiples.
Mais la thermodynamique macroscopique est un cadre vide pour l’étude de la matière. En particulier, elle ne dit rien sur les équations d’état des constituants du système. C’est pourquoi le paragraphe suivant traite de ces équations d’état, pour le gaz parfait et pour le fluide réel. Un modèle microscopique de l’état gazeux est brièvement introduit, afin de montrer qu’il permet, dans son domaine de validité, d’évaluer de nombreuses grandeurs utiles, comme les capacités thermiques.
Sont ensuite abordés les changements d’état d’un fluide, donc les transformations gaz-liquide pour un corps pur et pour un système à composants multiples (solution idéale et solution réelle), avec présentation des diagrammes qui permettent une description commode, qualitative et quantitative, de ces changements d’état.
Deux systèmes multicomposants particuliers font l’objet d’une étude spéciale, en raison de leur importance pratique : l’air humide et les fumées.
Enfin, des indications sont fournies sur les sources de données et les méthodes d’estimation des grandeurs qui entrent dans les multiples applications des considérations générales développées dans cet article.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Transformation gaz-liquide d’un mélange
4.1 Cas particulier : l’air sec
L’air est évidemment un mélange, contenant principalement des proportions approximatives en volume, de en oxygène et de en azote. On peut le considérer comme un constituant unique, dans la mesure où ces proportions ne changent pas, et, en conséquence, tracer des diagrammes tels que (T, S ) (figure 18). On remarque qu’aux températures voisines de la température ambiante et aux pressions proches de la pression atmosphérique, l’air sec peut être considéré comme un gaz parfait. Ces diagrammes sont sujets à caution au voisinage de la liquéfaction, qui modifie la composition du liquide par rapport à celle du gaz.
HAUT DE PAGE4.2 Solutions idéales
4.2.1 Généralités. Diagramme isotherme
Un liquide formé de plusieurs constituants est une solution idéale lorsque deux conditions sont remplies :
-
la vapeur qui surmonte le liquide est un gaz parfait ; il en résulte que la loi de Dalton s’applique à la fraction molaire du constituant i de la phase gaz, à la pression partielle P i :
-
la...
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Transformation gaz-liquide d’un mélange
BIBLIOGRAPHIE
-
(1) - Thermodynamique macroscopique. - A223, traité sciences fondamentales, Techniques de l’Ingénieur, fév. 1978.
-
(2) - LIDE (D.R.) - Handbook of Chemistry and Physics. - , Ed. The Chemical Rubber Co (1993).
-
(3) - REID (R.C.), PRAUSNITZ (J.M.), SHERWOOD (T.K.), POLING (B.E.) - The Properties of Gases and liquids. - 4th Ed., McGraw Hill (1987).
-
(4) - DYMOND (J.H.), SMITH (E.B.) - The Virial Coefficients of Pure Gases and Mixtures. - Clarendon Press Oxford (1980).
-
(5) - NELSON (L.C.), OBERT (O.F.) - * - Trans ASME, 76, 1057 (1954).
-
(6) - VIDAL (J.) - Thermodynamique. Méthodes appliquées au raffinage et au Génie chimique. - T. 1, p. 247, Éditions Technip (1973).
-
...
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive