Présentation

Article

1 - RAPPELS SUR LES ATOMES ET LES RAYONNEMENTS IONISANTS

2 - MODES D'EXPOSITION AUX RAYONNEMENTS IONISANTS

  • 2.1 - Exposition externe
  • 2.2 - Exposition interne
  • 2.3 - Exposition cutanée

3 - GRANDEURS PHYSIQUES ET DOSIMÉTRIQUES

4 - EFFETS DES RAYONNEMENTS IONISANTS

5 - SOURCES ET NIVEAUX D'EXPOSITION

6 - RADIOPROTECTION EN MILIEU PROFESSIONNEL

7 - PROTECTION CONTRE L'EXPOSITION INTERNE

8 - RÉGLEMENTATION DE RADIOPROTECTION

Article de référence | Réf : SL6160 v1

Protection contre l'exposition interne
Protection contre les dangers des rayonnements ionisants

Auteur(s) : Alain BIAU, Jean-Pierre VIDAL

Relu et validé le 01 sept. 2015

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Les sources d'exposition aux rayonnements ionisants qui font l'objet d'une utilisation quotidienne sont multiples et les risques qui en découlent très variables. Les conséquences sont parfois potentiellement mortelles, des catastrophes nucléaires aux dangers de la radiothérapie médicale. Les rayonnements ionisants peuvent aussi dans certains domaines ne jamais donner lieu à d'incidents particuliers. Après rappel de quelques notions de base, cet article fait le point sur tous les moyens de protection contre l'exposition aux rayonnements ionisants d'origine naturelle ou artificielle, leurs origines, leurs effets biologiques, les grandeurs physiques qui quantifient leur impact sur la matière, les règles de radioprotection et la réglementation en vigueur.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

The sources of ionizing radiation exposure which are used daily are multiple and the derived risks extremely variable. The consequences are sometimes potentially lethal from nuclear catastrophes to the dangers of medical radiotherapy. In addition, in certain domains, ionizing radiation never causes particular types of incidents. After having recalled certain basic notions, this article focuses on all the protection means against exposure to natural or artificial ionizing radiations, their biological effects, the physical quantities which quantify their impact on matter, the radioprotection rules and the regulation in force.

Auteur(s)

  • Alain BIAU : Institut de radioprotection et de sûreté nucléaire (IRSN), direction scientifique

  • Jean-Pierre VIDAL : Institut de radioprotection et de sûreté nucléaire (IRSN), direction scientifique

INTRODUCTION

Les sources d'exposition aux rayonnements ionisants qui font l'objet d'une utilisation quotidienne sont multiples et les risques qui en découlent sont très variables, insignifiants dans certains cas et potentiellement mortels dans d'autres.

Quand on évoque les dangers des rayonnements ionisants, on pense tout d'abord au nucléaire militaire marqué dans l'histoire par Hiroshima (1945), au nucléaire civil remis en cause par l'accident de Tchernobyl (1986) ou aux installations de radiothérapie en milieu médical récemment liées aux douloureuses affaires d'Épinal et de Toulouse.

Pour autant, il faut relever que les rayonnements ionisants sont largement utilisés dans des domaines beaucoup moins connus et qui n'ont jamais donné lieu à d'incidents particuliers, soit par la modicité du risque potentiel, soit parce que les moyens de protection et les dispositifs réglementaires sont respectés et efficaces.

Nous nous proposons de faire un point sur les moyens de protection contre l'exposition aux rayonnements ionisants d'origine naturelle ou artificielle après avoir rappelé quelques éléments de base sur les rayonnements ionisants, leurs origines, leurs effets biologiques, les grandeurs physiques qui quantifient leur impact sur la matière, les règles de radioprotection et la réglementation en vigueur.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-sl6160


Cet article fait partie de l’offre

Génie nucléaire

(170 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

7. Protection contre l'exposition interne

L'exposition interne résulte d'une incorporation de radionucléides par pénétration dans l'organisme (inhalation, ingestion ou blessure).

En milieu de travail, le risque le plus fréquent est lié à l'inhalation de gaz ou d'aérosols radioactifs dont les quantités inhalées vont dépendre directement des activités volumiques de l'air ambiant dans le laboratoire ou l'atelier. La diffusion dans le corps des individus sera fonction de la taille et de la forme des particules (diamètre aérodynamique) ainsi que de la forme chimique plus ou moins soluble.

Hormis des situations accidentelles ou incidentelles, l'ingestion directe en milieu de travail est rare et, par principe, non tolérable en exposition chronique, d'autant que le pipetage est désormais automatisé, par contre l'ingestion peut se faire à partir de doigts contaminés pour des fumeurs ou des suceurs de stylos par exemple.

Enfin, l'incorporation par des plaies contaminées est limitée en général à des situations d'incidents, comme les piqûres par une aiguille ou les coupures avec un scalpel.

Les moyens de prévention sont donc conventionnels et communs avec d'autres types de nuisances :

  • port de gants et précautions pour ne pas mettre de radioactivité en suspension, port de masque, lorsque c'est possible, adapté aux tailles des particules ;

  • ventilation en dépression correctement réglée, utilisation de hotte ventilée pour la préparation des sources ;

  • contrôle régulier des contaminations surfaciques des paillasses et contrôle continu de l'activité volumique ambiante avec différents niveaux d'alerte.

Bien entendu tous ces moyens sont à adapter en fonction du risque potentiel, il est évident que les niveaux de contrôle ne sont pas de même nature dans un bâtiment réacteur d'une centrale nucléaire où les personnels sont revêtus de tenues étanches avec masques et assistance respiratoire que dans un service hospitalier de médecine nucléaire où des tenues de ce type seraient surdimensionnées, inadaptées et anxiogènes pour les patients !

En cas de contamination, les moyens pour réduire l'exposition interne qui en résulte sont limités. On peut simplement stimuler l'élimination en buvant beaucoup pour les éléments qui s'éliminent préférentiellement par voie urinaire ou en prenant des laxatifs pour les éléments qui s'éliminent par les selles. Pour certains éléments comme le plutonium,...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Génie nucléaire

(170 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Protection contre l'exposition interne
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - NÉNOT (J.-C.) -   Effets biologiques des rayonnements ionisants.  -  [BN 3 902] (1999).

  • (2) - MÉTIVIER (H.) -   Sources d'irradiation par les rayonnements ionisants.  -  [BN 3 900] (1998).

1 Sources bibliographiques

* - OMIRIS CD ROM réalisé sous l'égide de la Fédération des Enseignants en Radiobiologie, Radiopathologie et Radioprotection (FE3R) (2004).

* - Rapports annuels 2006 et 2007 de l'ASN.

* - Rapport annuel 2006 de l'IRSN.

BEAUVAIS-MARGH (H.) - VALERO (M.) - BIAU (A.) - BOURGUIGNON (M.) - Niveaux de référence diagnostique : spécificités de la demande française en radiologie. - Radioprotection, vol. 38, no 2 (2003).

TELLE LAMBERTON (M.) - BERGOT (D.) - GAGNEAU (M.) - SANSON (E.) - GIRAUD (M.) - NERON (M.O.) - HUBERT (P.) - Cancer mortality among French Atomic Energy Commission Workers. - American Journal of Industry and Medicine, 45, p. 34-44 (2004).

CARDIS (E.) - VRIJHEID (M.) - BLETTNER (M.) - GILBERT (E.) - HAKAMI (M.) - HILL (C.) - HOWE (G.) - KALDOR (J.) - MURHEAD (C.R.) - SCHUBAUER-BERCO (M.) - YOSHIMURA (T.) - BERMANN (F.) - COWPER (G.) - FIX (J.) - HACKER (C.) - HEINMILLER (B.) - MARSHALL (M.) - THIERRY-CHEF (I.) - UTTERBACK (D.) - AHN (Y.O.) - AMOROS (E.) - ASHMORE (P.) - AUVINEN (A.) - BAE (J.M.) - BERNAR (J.) - BIAU (A.) - COMBALOT (E.) - DEBOODT (P.) - DIEZ SACRISTAN (A.) - EKLOF (M.) - ENGELS (H.) - ENGHOLD (G.) - GULIS (G.) - HABIB (M.R.) - HOLAN (K.) - HYVONEN (H.) - KEREKES (A.) - KURTINAITIS (J.) - MALKEN (H.) - MARTUZZI (M.) - MASTAUSKAS (A.) - MONNET (A.) - MOSSET (M.) - PIERCE (M.S.) - RICHARDSON (D.B.) - RODRIGUEZ-ARTALEJO (F.) - ROGEL (A.) - TARDY (H.) - TELLE LAMBERTON (M.) - TURAI (I.) - USEL (M.) - VERESS (K.) - The...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Génie nucléaire

(170 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS