Article de référence | Réf : RE111 v2

Chemin réactionnel de la décomposition thermique des alanates
Stockage réversible de l'hydrogène dans les alanates

Auteur(s) : Junxian ZHANG, Fermin CUEVAS, Annick PERCHERON-GUÉGAN

Relu et validé le 23 juin 2022

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Les alanates, composés inorganiques formés par un complexe anionique Al–H et un cation métallique, contiennent de grandes quantités d'hydrogène. Actuellement, le tétra-alanate de sodium, NaAlH4 , est le composé le plus prometteur pour le stockage réversible d'hydrogène dans des conditions normales de pression et de température. Il absorbe 5,6 % massique d'hydrogène, avec une compacité élevée (70 kgH/m3) et une cinétique rapide d'hydrogénation en présence de dopants à base de titane.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Reversible hydrogen storage in alanates

Alanates, inorganic compounds formed by an anionic complex Al-H and a metal cation, contain large quantities of hydrogen. At this time, the sodium tetra-alanate,, NaAlH4, is the most promising compound for the reversible storage of hydrogen under normal pressure and temperature conditions. It absorbs 5.6 wt. % of hydrogen with a high volumetric density (70 kgH/m3), a high compactness (kgH/m3 70) and fast hydrogenation kinetics in the presence of titanium-based dopants.

Auteur(s)

  • Junxian ZHANG : Docteur Post-doc au CNRS, équipe de chimie métallurgique des terres rares, Institut de chimie et des matériaux Paris-Est, CNRS-UPE, UMR7182

  • Fermin CUEVAS : Docteur Chargé de recherche au CNRS, équipe de chimie métallurgique des terres rares, Institut de chimie et des matériaux Paris-Est, CNRS-UPE, UMR7182

  • Annick PERCHERON-GUÉGAN : Docteur Directeur de recherche au CNRS, équipe de chimie métallurgique des terres rares, Institut de chimie et des matériaux Paris-Est, CNRS-UPE, UMR7182

INTRODUCTION

Points clés

Domaine : Chimie verte, énergie

Degré de diffusion de la technologie : Émergence | Croissance | Maturité

Technologies impliquées :

Domaines d'application : Stockage hydrogène, piles à combustible

Principaux acteurs français : CNRS

Pôles de compétitivité :

Centres de compétence :

Industriels :

Autres acteurs dans le monde :

Contact : [email protected], http://www.icmpe.cnrs.fr/spip.php?article628〈=fr

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-re111

CET ARTICLE SE TROUVE ÉGALEMENT DANS :

Accueil Ressources documentaires Énergies Ressources énergétiques et stockage Stockage de l'énergie Stockage réversible de l'hydrogène dans les alanates Chemin réactionnel de la décomposition thermique des alanates

Accueil Ressources documentaires Procédés chimie - bio - agro Opérations unitaires. Génie de la réaction chimique Innovations en génie des procédés Stockage réversible de l'hydrogène dans les alanates Chemin réactionnel de la décomposition thermique des alanates

Accueil Ressources documentaires Innovation Innovations technologiques Innovations en énergie et environnement Stockage réversible de l'hydrogène dans les alanates Chemin réactionnel de la décomposition thermique des alanates

Accueil Ressources documentaires Environnement - Sécurité Métier : responsable environnement Innovations en énergie et environnement Stockage réversible de l'hydrogène dans les alanates Chemin réactionnel de la décomposition thermique des alanates

Accueil Ressources documentaires Procédés chimie - bio - agro Chimie verte Énergie durable et biocarburants Stockage réversible de l'hydrogène dans les alanates Chemin réactionnel de la décomposition thermique des alanates


Cet article fait partie de l’offre

Hydrogène

(46 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

5. Chemin réactionnel de la décomposition thermique des alanates

La décomposition des alanates donne lieu à des phases intermédiaires de teneur en hydrogène plus faible, en raison de la désorption de ce gaz. La stœchiométrie des phases intermédiaires et la quantité d'hydrogène libérée sont différentes pour chaque famille d'alanates.

  • Les tétra-alanates alcalins se décomposent et libèrent de l'hydrogène en trois étapes :

    • R1 :

    ( 13 )
    • R2 :

    ( 14 )
    • R3 :

    ( 15 )

    La quantité d'hydrogène libérée dans ces étapes, ainsi que les températures caractéristiques de décomposition, T déc  , sont rassemblées dans le tableau 2. Étant donné que les hydrures alcalins se décomposent à très haute température (T déc > 500 oC), seules les réactions (R1) et (R2) sont considérées utilisables pour le stockage réversible de l'hydrogène.

    Prenons comme exemple le composé NaAlH4  . Sa teneur en hydrogène est de 7,5 %H massique et la quantité d'hydrogène potentiellement réversible est 5,6 %H massique : la différence correspond à la formation de NaH. La température caractéristique de décomposition de cet hydrure est de l'ordre de T déc3 = 500 oC et, donc, la réaction (R3) n'est pas intéressante pour le stockage réversible de l'hydrogène. En revanche, les deux premières réactions...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Hydrogène

(46 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Chemin réactionnel de la décomposition thermique des alanates
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - JOUBERT (J.-M.), CUEVAS (F.), LATROCHE (M.), PERCHERON-GUÉGAN (A.) -   Différentes méthodes de stockage de l'hydrogène.  -  Ann. Chim. Sci. Mat., 30, p. 441 (2005).

  • (2) - SANDROCK (G.) -   A panoramic overview of hydrogen storage alloys from a gas reaction point of view.  -  J. Alloys Compd., 293-295, p. 877 (1999).

  • (3) - EBERLE (U.), FELDERHOFF (M.), SCHUTH (F.) -   Chemical and physical solutions for hydrogen storage.  -  Angew. Chem. Int. Ed., 48, p. 6608 (2009).

  • (4) - SCHLAPBACH (L.), ZÜTTEL (A.) -   Hydrogen-storage materials for mobile applications.  -  Nature, 414, p. 353 (2001).

  • (5) - GROCHALA (W.), EDWARDS (P.P.) -   Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen.  -  Chem. Rev., 104, p. 1283 (2004).

  • (6) - LOVVIK (O.M.), SWANG (O.), OPALKA (S.M.) -   Modeling...

1 Sites Internet

COST action MP1103 on « Nanostructured materials for Solid State Hydrogen Storage » http://www.cost-mp1103.eu/WebPages/costmp1103.php

HAUT DE PAGE

2 Annuaire

HAUT DE PAGE

2.1 Laboratoires

Équipe de Chimie Métallurgique des Terres Rares /ICMPE/CNRS https://www.icmpe.cnrs.fr/

Groupement de Recherche CNRS « Acthyf » (Acteurs de la communauté hydrogène en France) http://www.gdr-acthyf.cnrs.fr/

CEA-Liten http://www-liten.cea.fr/fr/activites_rd/tech_h2_06.htm

HAUT DE PAGE

2.2 Associations – Fédérations – Organismes

« AFHYPAC » : Association Française pour l'Hydrogène et les Piles à Combustible http://www.afh2.org/fr/accueil

...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Hydrogène

(46 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS