Présentation
EnglishAuteur(s)
-
Michel GRACIET : Docteur ès sciences physiques - Ingénieur au Laboratoire central de recherches de Thomson-CSF
-
Joseph PINEL : Docteur ès sciences physiques - Chef de service des Technologies Avancées Thomson-CSF DCS Centre électronique Toulouse
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Cet article traite plus spécialement d’exemples de protection, tant industriels qu’électriques et électroniques.
On étudiera d’abord les composants à mettre en œuvre dans les quatre cas de perturbations électriques considérées précédemment (cf. article Origine des perturbations). Dans chaque cas, les principes de protection sont expliqués et les réponses à la perturbation sont préconisées.
Dans une deuxième partie, on verra que les protections contre des perturbations plus lentes que les quatre premiers cas étudiés sont basées sur des thermistances.
Enfin, les domaines spéciaux de protection seront détaillés : moyens de transport (véhicules automobiles, traction électrique ferroviaire, avionique), communications (téléphonie, réseau hertzien), informatique et communications à haut débit.
On voit à la lumière des exemples donnés dans cet article qu’une efficacité optimale demande le plus souvent l’association de moyens variés.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Réseaux électriques et applications
(179 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
7. Conclusion
La nécessité de protéger les équipements contre les perturbations se fait de plus en plus pressante en raison, d’une part, de la susceptibilité croissante des composants et des circuits dont ils sont constitués, d’autre part, de la multiplication des sources de surcharges électriques à considérer. Toutefois, il convient avant tout d’étudier la rentabilité et, le cas échéant, la nécessité d’une telle protection.
-
Une protection peut, en effet, viser deux objectifs :
-
une économie dans l’exploitation de l’équipement ;
-
la sécurité dans son fonctionnement.
L’économie réalisée sera la différence entre le coût de la protection et celui des composants détériorés, éventuellement augmentée des coûts d’exploitation liés au non-fonctionnement de l’équipement.
L’économie maximale sera donc fondée sur un compromis entre le prix de la protection et le niveau réalisé de protection.
Exempleil ne serait pas réaliste de protéger un composant de durée de vie de 5 ans par un suppresseur de transitoires de même coût et contre une surtension dont la probabilité de détruire le suppresseur est de 1 cas tous les 5 ans.
En revanche, pour les équipements ne devant en aucun cas subir une rupture de fonctionnement, le critère de coût s’effacera devant celui de sécurité.
-
-
La protection des équipements contre les perturbations électriques et électromagnétiques fait appel à de multiples technologies et à des choix ardus de composants. Étant supposé que les protections par blindage et mises à la terre soient déjà employées, cet article a tenté de présenter une gamme aussi large que possible d’exemples de protection par des composants non linéaires (diodes ou varistances) ou des composants se mettant en court-circuit (éclateurs ou thyristors).
Le choix d’un type de composant employé seul est souvent complexe. De manière générale, il convient de souligner les défauts essentiels pour chaque type :
-
les composants semi-conducteurs sont les plus coûteux et ils ne protègent que contre des perturbations de faible énergie ;
-
les éclateurs mettent à zéro la tension...
-
Cet article fait partie de l’offre
Réseaux électriques et applications
(179 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusion
BIBLIOGRAPHIE
-
(1) - KIMPARA (A.) - Problems in atmospheric et space electricity. - S.C. Coroniti Ed. Elsevier Pub Co 1965 p. 352-65.
-
(2) - LEVINSON (L.M.), PHILIPP (H.R.) - ZnO varistors for transient protection. - IEEE Trans. on Parts, Hybrids and Packaging (USA) PHP 13 n 4 1977 p. 338-43.
-
(3) - Transient voltage suppression manual. - Ed. General Electric Company (USA) 1982 p. 5-6.
-
(4) - Preliminary Recommended environmental practics for electronic equipment. - Design SAE, 2 Pennsylvania Plaza. N.Y., N.Y. 10001.
-
(5) - * - Colloque International sur les nouvelles orientations des composants passifs, Paris 29-3-1982, p. 328-33.
-
(6) - * - Journées d’Études sur les varistances à base d’oxyde de zinc. ESE Gif-sur-Yvette, 6-3-1986, p. 139-41.
-
...
BERTRAND (G.) - Conception et modélisation électrique de structures de protection contre les décharges électrostatiques en technologies BICMOS et CMOS analogique - . Institut national des sciences appliquées (Toulouse) (2001).
HAUT DE PAGE2.1 Représentations graphiques des composants
NF EN 60617-4 (Mars 1997), Symboles graphiques pour schémas. Partie 4 : composants passifs de base.
...Cet article fait partie de l’offre
Réseaux électriques et applications
(179 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive