Présentation

Article

Article de référence | Réf : IN701 v1

Aspects environnementaux et bilan énergétique
Cycle à absorption NH3/H2O pour coproduction de froid et électricité - Valorisation de sources de chaleur à basse température [80-200 °C]

Auteur(s) : Simone BRACCIO, Hai Trieu PHAN, Nicolas TAUVERON, Nolwenn LE PIERRÈS

Date de publication : 10 nov. 2022

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Un cycle à absorption combiné avec une turbine permet la coproduction de froid et d'électricité. Cette technologie est très prometteuse pour sa capacité à exploiter plus efficacement les sources de chaleur à basse température que la production séparée avec des cycles simples. Le développement d’un modèle détaillé du cycle complet permet d'évaluer les performances atteignables et l’intérêt de cette technologie. Sur la base des études numériques, un cycle pilote a été développé et testé à l’échelle du laboratoire permettant de mieux comprendre les verrous de réalisation et son fonctionnement. Ces retours d’expérience seront très importants pour un futur développement de démonstrateur à taille réelle, pour une application à identifier.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

NH3/H2O absorption-based cold and electricity combined production cycle

An absorption cycle integrated with a turbine allows the co-production of cold and electricity. This technology is very promising for its ability to harness low temperature heat sources more efficiently than separate production with simple thermodynamic cycles. The development of a detailed model of the complete cycle makes it possible to evaluate the performance achievable and the interest of this technology. Based on the numerical studies, a pilot plant was developed and tested on a laboratory scale to better understand the functioning of the cycle and the design challenges. The results will be very important for future development and scale-up of the technology for use in application to be identified.

Auteur(s)

  • Simone BRACCIO : Ingénieur chercheur - CEA de Grenoble LITEN/DTCH, laboratoire LOCIE UMR 5271 CNRS, Université Savoie Mont-Blanc

  • Hai Trieu PHAN : Ingénieur chercheur - CEA de Grenoble LITEN/DTCH

  • Nicolas TAUVERON : Ingénieur chercheur - CEA de Grenoble LITEN/DTCH

  • Nolwenn LE PIERRÈS : Professeure des universités - Laboratoire LOCIE UMR 5271 CNRS, Université Savoie Mont-Blanc

INTRODUCTION

Compte tenu de la demande mondiale d'énergie toujours croissante et de l'attention portée aux questions environnementales et au changement climatique, des recherches se développent de plus en plus sur de nouvelles technologies de production de froid et d’électricité plus efficaces basées sur des sources renouvelables ou de récupération. Dans ce contexte, les systèmes à absorption se prêtent bien à la valorisation d'énergie à basse température pour la production de froid. L’avantage de ces machines est que la compression mécanique est remplacée par une compression thermochimique qui utilise de la chaleur comme source énergétique. En complément des systèmes de contrôle, le principal apport d’électricité se situe au niveau d’une pompe, mais il est inférieur d’environ 10 à 30 fois à celui nécessaire pour un compresseur. Un autre atout de la technologie des machines à absorption est qu’elles permettent de produire du froid en utilisant des fluides frigorigènes déjà bien connus, non nocifs pour la couche d’ozone et non émetteurs de gaz à effet de serre, comme l’ammoniac ou l’eau. Les systèmes de refroidissement à absorption ont jusqu'à présent été des technologies de niche, mais le marché est en croissance avec une réduction de leurs coûts, qui ont été divisés par deux entre 2007 et 2016 selon une étude européenne. De tels systèmes sont prometteurs surtout dans deux domaines : la valorisation de rejets thermiques industriels et l’utilisation de sources de chaleur renouvelables, notamment dans le domaine de la climatisation solaire en raison d’une bonne adéquation entre la ressource solaire et le besoin de froid.

Bien que caractérisée par un faible niveau de maturité technologique (TRL 3-4 sur une échelle de maturité allant jusqu’à 9), la coproduction, au sein d’un même cycle, d’électricité et de refroidissement à partir d’une source thermique à basse température est l’objet de nombreuses études. Un tel système permettrait d'augmenter l'efficacité énergétique du système global et de mutualiser certains composants. Le présent article se concentre sur un système combiné de productions de froid et d'électricité en parallèle à partir d’une source de chaleur à basse température. L’étude s’appuie sur un prototype expérimental de machine à absorption eau/ammoniac de puissance thermique de 10 kW au générateur au sein duquel une turbine est intégrée. Un modèle 1D de la turbine, calibré sur des simulations CFD (Computational Fluid Dynamics), est intégré dans un modèle validé de la machine à absorption et utilisé pour étudier les interactions entre la turbine et le cycle qui la contient. Les contraintes imposées par la turbomachine sur le cycle sont mises en évidence et des solutions pour augmenter la flexibilité du système ont été proposées.

Les analyses réalisées ont permis de définir la plage de fonctionnement du cycle et d’en étudier les performances. Ces résultats ainsi que les retours d’expérience du prototype seront très importants pour un futur développement de démonstrateur à taille réelle pour une application à identifier.

Nota :

un tableau des sigles, notations et symboles est présenté en fin d'article.

Points clés

Domaine : Machines thermodynamiques de production de froid et électricité

Degré de diffusion de la technologie : Émergence

Technologies impliquées : Cycles à absorption NH3/H2O et turbine axiale

Domaines d’application : Valorisation de chaleur fatale ou sources de chaleur renouvelables

Acteurs français impliqués dans le projet :

Institut Carnot – Énergies du futur

Centres de compétence : CEA Liten et CNRS, laboratoire LOCIE (Université Savoie Mont Blanc)

Industriels : Enogia (développement de la turbine)

Contact : [email protected]

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

absorption   |   Combined cycle   |   Ammonia/water   |   Axial turbine

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-in701


Cet article fait partie de l’offre

Froid industriel

(49 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

4. Aspects environnementaux et bilan énergétique

La plupart des machines de réfrigération actuelles fonctionnent avec des fluides frigorigènes à fort impact environnemental. Ce sont très souvent des HFC avec un PRP (potentiel de réchauffement planétaire) très supérieur à 150. Pour répondre à cette problématique, la réglementation F-Gas vise à limiter (avec une élimination progressive) l’utilisation des gaz à fort PRP, en particulier les HFC.

Dans ce contexte, le choix de l'ammoniac comme fluide frigorigène présente l'avantage d’utiliser un fluide naturel sans impact sur l’effet de serre (son PRP est 0). Cela fait du mélange NH3/H2O une excellente solution pour réduire les émissions, d’autant plus que de la chaleur fatale ou renouvelable peut être utilisée à la place de l'électricité. De plus, l'industrie de l'ammoniac est une industrie florissante et largement développée, compte tenu des nombreuses utilisations de ce fluide naturel. Enfin, l'ammoniac est un fluide à très haute densité énergétique, ce qui permet d'utiliser des composants beaucoup plus petits et donc moins coûteux. À titre d'exemple, la chaleur latente de l'ammoniac est de 1 226 kJ/kg, tandis que celle de l'un des fluides frigorifiques les plus couramment utilisés, le R134a, est de 191 kJ/kg.

4.1 Description du modèle

Compte tenu de ces considérations liminaires, une étude plus approfondie de la technologie a été réalisée à partir des données de l’installation pilote. Un modèle 1D compressible de la turbomachine a été d’abord créé. Un bilan énergétique, prenant en compte les frottements dans l'injecteur et les pertes par recompression en sortie de celui-ci à travers deux rendements, permet de calculer la vitesse d'entrée dans le rotor. Celle-ci est utilisée pour calculer le travail échangé par le fluide avec les aubes mobiles grâce à l’équation d'Euler et à la connaissance du triangle des vitesses :

( 1 )

Dans l'étude, l'approche suivie consiste à soustraire des termes de perte à ce travail théorique maximal pouvant être produit à partir de l'énergie...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Froid industriel

(49 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Aspects environnementaux et bilan énergétique
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) -   Mission Innovation.  -  http://mission-innovation.net/ (2020).

  • (2) - EUROPEAN COMMISSION -   Clean energy for all Europeans.  -  Euroheat Power (English Ed.), https://doi.org/10.2833/9937 (2019).

  • (3) - RAGWITZ (M.), HERBST (A.), HIRZEL (S.), RAGWITZ (M.), REHFELDT (M.), REUTER (M.), STEINBACH (J.) -   European Commission Directorate-General For Energy Directorate C. 2 – New energy technologies.  -  Innovation and clean coal. (n.d.).

  • (4) - RTE -   Electricy Report 2018 in France.  -  https://bilan-electrique-2018.rte-france.com/wp-content/uploads/2019/02/BE-PDF-2018-1.pdf (2019).

  • (5) - HEROLD (K.E.), RADERMACHER (R.), KLEIN (S.A.) -   Absorption Chillers and Heat Pumps.  -  https://doi.org/10.1201/b19625 (2016).

  • (6) - RHC (Renewable Heating and cooling) -   2050-Vision...

1 Réglementation

Règlement (UE) n° 517/2014 du Parlement européen et du Conseil du 16 avril 2014 relatif aux gaz à effet de serre fluorés et abrogeant le règlement (CE) n° 842/2006 (JOUE n° L. 150 du 20 mai 2014) https://climate.ec.europa.eu/eu-action/fluorinated-greenhouse-gases/eu-legislation-control-f-gases_en.

 

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Froid industriel

(49 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS