Présentation

Article

1 - VHDL

  • 1.1 - Rappel historique
  • 1.2 - Objectifs
  • 1.3 - Forme générale d’un modèle
  • 1.4 - Typage
  • 1.5 - Le signal
  • 1.6 - Identificateurs et littéraux
  • 1.7 - Les opérateurs
  • 1.8 - Les instructions séquentielles
  • 1.9 - Instructions concurrentes
  • 1.10 - Les autres instructions concurrentes
  • 1.11 - Instanciation
  • 1.12 - Les autres unités de conception
  • 1.13 - Exemple
  • 1.14 - Les phases de traitement d’un modèle VHDL

2 - L’EXTENSION AMS

3 - EXEMPLES D’APPLICATION

4 - DIFFICULTÉS SOUVENT RENCONTRÉES ET QUELQUES PRÉCISIONS

5 - CONCLUSION

Article de référence | Réf : D3067 v1

Difficultés souvent rencontrées et quelques précisions
Extension AMS du langage VHDL pour l’électronique de puissance

Auteur(s) : Yannick HERVÉ

Date de publication : 10 nov. 2005

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

L’électronique de puissance fait très peu appel aux méthodes et outils de conception assistée par ordinateur. Pour autant, cette industrie en pleine croissance devra s’orienter vers le prototypage virtuel pour conserver sa compétitivité. Le langage VHDL endosse la hiérarchie de conception, les fonctions de résolution de conflit d’accès, les types utilisateurs et les valeurs symboliques. Après un rappel des structures du langage VHDL, spécialisé dans la description des systèmes numériques, cet article présente ses possibilités et avantages, avant de s’attarder sur son extension AMS.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Yannick HERVÉ : Maître de Conférences des Universités, Université Louis Pasteur – Strasbourg - Chercheur au Laboratoire PHASE, CNRS UPR 292

INTRODUCTION

Les différentes disciplines de l’électronique utilisent, à des degrés très variés, des outils et des flots de conception assistés par ordinateur. Mais si on considère l’ électronique de puissance, les convertisseurs statiques sont conçus en grande partie grâce à l’expérience aiguisée des ingénieurs et par la mise au point de prototypes basés sur des cycles de détection et de correction d’erreurs.

La conception se déroule par étapes de dimensionnement des différentes parties du convertisseur, mais n’est pas assistée par ordinateur, si ce n’est quelques calculs ou la recherche dans des bases de données. Tout d’abord, l’ingénieur choisit une architecture compatible avec le cahier des charges. Le choix des composants tient en grande partie à la connaissance que possède l’ingénieur des technologies. En schématisant un peu, pour simplifier son travail, l’ingénieur sépare certains points : le convertisseur au sens de sa fonction première, le système de commande et de régulation, le système de dissipation des pertes par effet Joule, et les moyens pour assurer la qualité minimale du convertisseur vis-à-vis des normes électromagnétiques. La conception du convertisseur aboutit, si l’expérience de l’ingénieur lui permet, à chaque étape, de faire des choix qui ne rendent pas impossible la résolution du problème à l’étape suivante.

En effet, dans un convertisseur tous les phénomènes sont liés. Par exemple, si l’on considère la commutation des composants de puissance, qui est la base des techniques de découpage de l’énergie : plus cette commutation est rapide, moins de pertes Joule sont dissipées par le composant, mais plus il participe à la pollution électromagnétique générée par le convertisseur. Ralentir la commutation adoucit le comportement vis-à-vis des normes électromagnétiques, mais requiert un dispositif de dissipation des pertes Joule plus efficace, donc plus volumineux et plus cher. Qui plus est, un convertisseur volumineux éloigne les dispositifs actifs les uns des autres, ce qui engendre des problèmes de connectique ; or, les connexions participent, elles aussi, à la qualité des commutations... Un tel couplage des phénomènes physiques rend l’actuelle démarche de conception peu pertinente. Pourtant, les nouveaux langages de description, les nouveaux outils d’analyse permettent de tenir compte de ce foisonnement de phénomènes et de leurs couplages divers.

L’industrie de l’électronique de puissance paraît bouder les méthodes et les outils de conception assistés par ordinateur. En effet, le prototypage physique y reste une valeur sûre, faute d’outil et de méthodologie ayant fait leur preuve, mais les choses évoluent par contraintes économiques et une tendance forte à l’intégration. En effet, le nombre et la variété des convertisseurs de puissance sont appelés à croître très fortement dans les années à venir. Cette industrie doit donc préparer sa compétitivité en travaillant sur le prix du kilowatt commuté. Celui-ci ne fait que baisser depuis vingt ans et des secteurs comme l’automobile imposent encore des baisses significatives. Quels que soient les développements technologiques en cours, l’électronique de puissance est inéluctablement conduite à mettre en œuvre le prototypage virtuel. Entendons par là toute la chaîne des méthodes assistées par ordinateur pour la conception et les analyses, ainsi que les outils qui permettent de valider un projet avec confiance, depuis l’expression des besoins jusqu’à la réalisation, voire l’industrialisation.

Toutes les branches de l’industrie électronique ont en commun la nécessité d’aborder globalement la conception d’un produit, que ce soit un système sur puce, une carte électronique ou un convertisseur complet. Il est important de comprendre ce qu’un outil d’aide à la conception peut offrir dès maintenant comme services et ce qui doit changer dans les habitudes industrielles pour apprivoiser ces outils et ces méthodes.

Dans ce premier article nous faisons une présentation générale et assez formelle des constructions et possibilités du langage VHDL-AMS pour pouvoir aborder plus tard en détails tous les avantages qui y sont liés. Après avoir rappelé les structures principales du langage VHDL ( Very High Scale Integrated Circuit Hardware Description Language ) [5], spécialisé dans la description des systèmes numériques, nous présentons son extension AMS ( Analog and Mixed Signal ). L’article sera clos par quelques exemples simples et purement illustratifs.

Un second article [D 3 068] permettra de traiter des cas plus concrets de conception en électronique de puissance avec ces nouveaux outils.

Le lecteur rompu au langage VHDL peut se reporter sans attendre au paragraphe 2 (partie AMS) (voir schéma de la figure 1).

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-d3067


Cet article fait partie de l’offre

Conversion de l'énergie électrique

(269 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

4. Difficultés souvent rencontrées et quelques précisions

Les difficultés rencontrées au cours des premiers pas de l’apprentissage sont toujours les mêmes. Par exemple, les débutants, tout à la maîtrise de la syntaxe, oublient de mettre une instruction wait dans les process provoquant alors une famine du simulateur puisque l’horloge ne peut plus avancer. Les simulateurs ne sont pas toujours très loquaces sur cette erreur.

La modélisation faisant intervenir une interaction entre les noyaux de simulation analogique et numérique doivent absolument se baser sur l’utilisation de l’instruction break pour générer les points de simulation analogique au bon moment et l’attribut above pour situer précisément sur l’échelle du temps la position d’une transition d’une quantité par rapport à un seuil ou d’une quantité par rapport à une autre. Tout modèle mixte ne faisant pas intervenir ces méthodes est formellement faux et, bien que apparemment juste, peut révéler de forts dysfonctionnements dans des conditions d’utilisation différentes ou sur un autre simulateur.

Les débutants ont du mal à faire la différence entre le mécanisme d’initialisation des quantités (implicite ou explicite au moment de la déclaration) et l’initialisation au sens du système (par l’instruction break, ou l’utilisation du signal domain). Dans le premier cas, l’utilisateur donne des valeurs de départ pour commencer l’analyse DC préliminaire à l’analyse transitoire ou fréquentielle alors que dans le deuxième cas l’utilisateur impose la valeur de l’analyse DC.

Le critère de solvabilité peut être vécu comme une contrainte très forte, mais il est en fait un guide précieux en modélisation. Au cours de l’apprentissage, ce critère passera progressivement du statut de contrainte difficile à celui de guide précieux pour le concepteur. Il faut quand même remarquer que, même si le critère de solvabilité est respecté, il n’y aucune assurance que le système soit effectivement solvable. En effet le comptage des équations et des inconnues ne préjuge pas de l’existence d’équations contradictoires ou linéairement dépendantes.

Les premiers pas en VHDL-AMS sont assez difficiles mais il faut attirer l’attention des concepteurs sur l’importance de prendre tout de suite de bonnes habitudes en utilisant toutes les possibilités du langage, notamment la généricité.

...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conversion de l'énergie électrique

(269 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Difficultés souvent rencontrées et quelques précisions
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - HERVÉ (Y.) -   VHDL-AMS : Applications et enjeux industriels  -  . Préface de A. VACHOUX, Dunod éditeur, Collection Sciences-sup, ISBN : 2-10-005888-6.

  • (2) -   *  -  1076.1-1999 IEEE Standard VHDL Analog and Mixed-Signal Extensions. 320 pages, ISBN : 0-7381-1640-8.

  • (3) -   *  -  International Technology Roadmap for Semiconductors, Semiconductor Industry Association Edition, 1999.

  • (4) - WEBER (J.), MEAUDRE (M.)  -   Le Langage VHDL  -  . Dunod, ISBN : 2-10-004755-8.

  • (5) - CHRISTEN (E.), al  -   Tutorial VHDL-AMS  -  . 36e, Design Automation Conference, New Orleans, june 21-25, 1999.

  • (6) - MERMET (J.) -   Langages pour la conception des circuits intégrés  -  . [E 2 452] Électronique, Techniques de l’Ingénieur, 2001.

  • ...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conversion de l'énergie électrique

(269 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS