Présentation
EnglishRÉSUMÉ
Les plasmas thermiques couvrent un très large domaine d'applications du découpage ou soudage de pièces métalliques, à la sphéroïdisation des particules, en passant par la synthèse de poudres nanométriques ou ultrafines et le traitement des déchets. Pour développer des procédés plus efficaces, la technologie des torches a connu ces dernières années de nombreux progrès. Citons comme points d’optimisation de ces procédés : l’amélioration de la conception des torches, la création de torches en projection par arc, et la mise au point de capteurs de contrôle. Cet article traite des applications à des puissances inférieures à quelques centaines de kilowatts, la qualité des produits obtenus, leur reproductibilité et fiabilité.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Pierre FAUCHAIS : SPCTS UMR 6638 - Professeur à l'Université de Limoges
INTRODUCTION
Les plasmas thermiques couvrent un très large domaine d'applications : découpage ou soudage des pièces métalliques, traitements de surface et dépôts, sphéroïdisation et purification des particules, analyse chimique, synthèse de poudres nanométriques ou ultrafines, fabrication des pièces de forme, métallurgie extractive, refusion-purification des métaux, chauffage des répartiteurs de coulée, chimie, traitement des déchets… Certaines applications sont très largement établies (depuis les années 1940, mais d'une manière générale depuis les années 1960), mais d'autres sont en devenir.
La technologie des torches (cf. dossier « Plasmas thermiques : production » ) a fait de grands progrès au cours des 25 dernières années pour différentes raisons :
-
la nécessité pour l'industrie de développer des procédés plus efficaces ;
-
le coût attractif de l'électricité dans certains pays (essentiellement pour les applications de forte puissance (> 1 MW)) ;
-
le potentiel pour développer de nouveaux matériaux et les technologies correspondantes ;
-
la coopération accrue entre les fabricants de matériel, les chercheurs, les industriels concernés par les différents procédés et les producteurs d'électricité.
Cependant en dépit des nombreuses avancées technologiques au cours des vingt-cinq dernières années ainsi que des démonstrations de faisabilité en laboratoire où à l'échelle de prototypes, le nombre d'applications industrielles à grande échelle est encore relativement faible. Les raisons en sont :
-
une surestimation du potentiel des plasmas qui a conduit à un certain désappointement des utilisateurs ;
-
le manque d'études fondamentales pour appuyer le développement technique en particulier pour obtenir des conditions de fonctionnement reproductible (jusqu'à 60 paramètres macroscopique peuvent conditionner le fonctionnement d'un procédé plasma) ;
-
l'usure naturelle des électrodes (pour les torches à arc) que les utilisateurs ne savent pas toujours compenser ;
-
les problèmes économiques, d'autant plus cruciaux que le procédé plasma s'applique à un produit à faible valeur ajoutée. Par exemple l'utilisation des plasmas sur les hauts fourneaux est directement liée au prix relatif coke/kWh.
De très nombreuses applications ont vu le jour et se sont développées industriellement dans la gamme des puissances de quelques kilowatts à quelques centaines de kilowatts. D'autres semblent prometteuses au niveau du laboratoire mais n'ont pas encore eu de débouchés. Si l'on considère la répartition entre arcs et décharges RF (radiofréquence), la très grande majorité des applications passe par le procédé arc. Pour les applications à des puissances comprises entre plusieurs centaines de kilowatts et une centaine de mégawatts, à part deux applications de chimie pure, c'est essentiellement dans le domaine de la métallurgie, et récemment dans celui de la destruction des déchets, que les plasmas ont effectué leur percée.
Cependant, quelle que soit l'application, la règle d'or est que la torche à plasma doit être adaptée au procédé et non le procédé à la torche.
Les performances de la torche à plasma (à arc soufflé ou transféré) dépendent de la conception des électrodes et de leur refroidissement, de la géométrie de la chambre d'arc et de la tuyère (soit à un potentiel flottant, soit anode), de la façon dont les gaz plasmagènes sont injectés et de leur nature, de la géométrie d'un éventuel système de gainage et du gaz utilisé pour cela, de la source de courant, de l'automatisation de la mise en route et de l'arrêt, du déplacement relatif pièce à traiter / torche à plasma, de l'implantation de la torche sur le procédé.
D'une manière générale, la qualité des produits obtenus, la reproductibilité et la fiabilité du procédé dépendent fortement :
-
de la minimisation de l'usure des électrodes et de la tuyère ainsi que de sa prise en compte lors de l'utilisation de la torche ;
-
des conditions de démarrage ;
-
de l'automatisation du procédé et si possible de son contrôle en ligne.
Dans cette présentation, nous ne traiterons que les applications à des puissances inférieures à quelques centaines de kilowatts à l'exclusion des opérations métallurgiques, chimiques et de traitement de déchets.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(270 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
6. Sphéroïdisation des particules
D'une manière générale les besoins de l'industrie pour des particules sphériques relèvent des points suivants :
-
une meilleure coulabilité pour un écoulement régulier sans bouchage ou sans fonctionnement irrégulier des dispositifs d'alimentation en poudre ;
-
l'accroissement de la densité du cru pour le frittage ;
-
l'élimination des particules creuses ou fracturées ;
-
un état de surface plus lisse des particules pour limiter l'usure des canalisations de transport et donc la pollution du dépôt ou du matériau fritte ;
-
une meilleure pureté par le biais d'une vaporisation/réaction sélective.
Cela a donc amené la société Tekna® Canada à développer le procédé de sphéroïdisation schématisé sur la figure 17. Celui-ci est réalisé avec une torche RF (cf. [, figure 4]) fonctionnant à l'argon à des puissances de 100 à 400 kW selon la quantité traitée (jusqu'à 60 kg/h suivant la poudre). La taille des particules réfractaires (T > 3 000 K) doit être inférieure à 250 μm. Les particules fondues prennent une forme sphérique (sous l'effet des forces de tensions superficielles) et leur temps de vol est contrôlé pour obtenir une complète solidification avant qu'elles ne touchent le fond du premier dispositif de refroidissement où elles sont collectées. Les particules les plus petites, entraînées par le gaz plasma, sont collectées dans le premier cyclone puis dans le filtre. Le coût du traitement peut varier dans un rapport de 10 suivant la taille et la nature des particules, le degré de sphéroïdisation souhaité et la quantité de poudre à traiter. Les poudres sphéroïdiques sont des poudres à forte valeur ajoutée comme les métaux réfractaires (Re, Ta, Mo, W), les céramiques (SiO2, ZrO2, CaF2, TiN, WC…), les cermets WC-Co,...
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(270 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Sphéroïdisation des particules
BIBLIOGRAPHIE
-
(1) - FAUCHAIS (P.) - Plasmas thermiques - [D 2 810] [D 2 820]. Convertisseurs et machines électriques 2005 et 2007.
-
(2) - CAMY-PEYRET (F.), BRIAND (F.), OPDERBECKE (T.) - Synthèse des dernières avancées pour l'utilisation des plasmas d'arc électrique pour le soudage et la découpe des matériaux métalliques. - Colloque sur les Arcs Electriques – CAE 2005 (pub.) GREMI, Université d'Orléans, Mars (2005).
-
(3) - RENAULT (T.), HUSSARY (N.) - Current status and future trends in plasma cutting. - Symposium on Thermal Plasmas held in Sharm el Sheick, Egypt, Jan 2007, to be published in J. of High Temp. Material Processes 2nd issue 2008.
-
(4) - ELIOT (D.), LEMOINE (D.) - Découpage, soudage par plasmas. - Les plasmas dans l'industrie, (pub.) Doppée, Avon, F. 1991.
-
(5) - CAMY-PEYRET (F.) - Procédés d'oxycoupage plasma des métaux ferreux. - Demande brevet Européen N° EP 1480776, 2003.
- ...
ANNEXES
Plasma : International symposium on plasma chemistry, a lieu tous les deux ans. Rassemble environ 1 000 chercheurs et industriels. Le dernier a eu lieu à Kyoto en Août 2007.
Projection thermique : international thermal spray conférence, a lieu tous les ans. Rassemble 1 500 chercheurs et industriels avec une exposition de matériel (50 à 80 sociétés industrielles). Le dernier a eu lieu en Mai 2007 à Pékin. Le prochain se tiendra à Maastricht en Hollande du 02/06 au 04/06/2008. Informations sur : ITSC 2008 (Google).
HAUT DE PAGE
SAF...
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(270 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive