Présentation

Article

1 - CRITÈRES SIMPLES

2 - CRITÈRES COMPOSÉS

3 - CLASSIFICATIONS

Article de référence | Réf : D3412 v1

Critères composés
Actionneurs électromagnétiques - Classification topologique

Auteur(s) : Pierre-Emmanuel CAVAREC, Hamid BEN AHMED, Bernard MULTON

Date de publication : 10 févr. 2004

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Les actionneurs électromagnétiques sont la technologie la plus utilisée dans la conversion réversible électro-mécanique d'énergie. Il en existe de nombreuses types dont certains dits non conventionnels sont réservés à des applications très spécifiques et non standardisées. Cet article propose une classification des actionneurs en fonction de critères simples tels que la source d'excitation,  le type de bobinage de puissance (d’alimentation), le mode d’alimentation ou encore le mouvement généré. La classification fait également appel à des critères composés, construits par combinaison des critères simples. 

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Pierre-Emmanuel CAVAREC : Ingénieur Supélec - Agrégé de génie électrique, docteur de l’École normale supérieure (ENS) de Cachan - Laboratoire SATIE (UMR CNRS 8029)

  • Hamid BEN AHMED : Ingénieur, docteur de l’université de Paris-VI - Maître de conférences, ENS de Cachan, antenne de Bretagne - Laboratoire SATIE (UMR CNRS 8029)

  • Bernard MULTON : Agrégé de génie électrique, docteur de l’université de Paris-VI - Professeur des universités, ENS de Cachan, antenne de Bretagne - Laboratoire SATIE (UMR CNRS 8029)

INTRODUCTION

Bien que de nouvelles solutions émergent (piézo-électriques, magnétostrictives, voire électrostatiques dans les très faibles dimensions), les actionneurs électromagnétiques occupent toujours, et probablement encore pour longtemps, une place prépondérante dans la conversion – réversible – électromécanique d’énergie.

Au-delà des actionneurs dits conventionnels, bénéficiant d’une maturité technologique et d’une diffusion scientifique importantes (machines à courant continu à collecteur, synchrones à rotor bobiné, asynchrones à cage d’écureuil...), une très grande diversité d’actionneurs, dits non conventionnels, coexistent et se développent toujours. Ils répondent généralement à des exigences particulières et ne sont pas standardisés. Leur fonctionnement est également souvent méconnu et leur potentiel encore plus mystérieux. On les trouve notamment dans les applications de très grande diffusion (souvent de faible puissance : inférieure au kilowatt) telles que l’électroménager grand public, la domotique, l’automobile ou les jouets et dans celles exigeant de hautes performances. Leur évolution a été accélérée grâce aux formidables développements de l’électronique de puissance (notamment ses possibilités de « haute fréquence ») et de l’électronique microprogrammable.

Une classification de ces différents actionneurs paraît, au premier abord, risquée, sinon impossible, d’autant que leurs topologies sont très nombreuses et très variées. Néanmoins, après une analyse approfondie de différents actionneurs existants ou faisant l’objet de travaux de recherche, la mise en avant de critères fondamentaux topologiques, liés notamment au type de bobinage de puissance (d’alimentation), au mode d’alimentation, au mouvement généré, s’est révélée possible.

L’article s’inscrit dans la continuité des articles Machines tournantes : conversion électromécanique de l’énergie et Machines tournantes : principes et constitution traitant, d’une part, des principes de conversion électromécanique d’énergie et, d’autre part, de la constitution des machines tournantes, sous-entendues conventionnelles. Bien sûr, tous les mouvements, linéaires ou autres, seront considérés ici.

Suite à la classification des actionneurs présentée ici, un autre article Actionneurs électromagnétiques- Performances comparées compare leurs performances respectives.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-d3412


Cet article fait partie de l’offre

Conversion de l'énergie électrique

(269 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

2. Critères composés

Afin de faciliter la manipulation de ces critères fondamentaux, nous allons introduire des critères composés, plus habituels.

2.1 Catégories d’excitation

On définit un actionneur à excitation asynchrone (à induction ou à hystérésis) au sens large comme un actionneur à excitation induite dissipative 1.2.

Par opposition, on définit un actionneur à excitation synchrone comme un actionneur ayant une excitation produite ou induite non dissipative. Cette excitation impose une périodicité du rotor égale au pas mécanique. Nous allons illustrer les différentes catégories d’excitation sur des actionneurs cylindriques à phases réparties hétéropolaires.

HAUT DE PAGE

2.1.1 Excitation synchrone

On parle d’excitation synchrone à aimants permanents (figure 40a) lorsque l’excitation est du type aimantation, produite, non dissipative (par exemple, moteur à courant continu – MCC – sans balai à rotor extérieur, figure 3b). On parle d’excitation synchrone bobinée (figure 40b) lorsque l’excitation est du type courant, produite, dissipative (par exemple, moteur synchrone à rotor bobiné, figure 4). On parle d’excitation synchrone à réluctance variable (figure 40c) lorsque l’excitation...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conversion de l'énergie électrique

(269 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Critères composés
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - CHABRERIE (J.P.) -   Application de la méthode tensorielle au calcul des efforts dans les machines homopolaires à symétrie de révolution  -  . RGE, 79, no 5 (mai 1970).

  • (2) - GUILBERT (A.) -   Théorie, fonctionnement et calcul des machines électriques  -  . Dunod (1951).

  • (3) - MATT (D.), GOYET (R.), LUCIDARME (J.), RIOUX (C.) -   Longitudinal field multi-airgap linear reluctance actuator.  -  Electrical Machines and power systems, 13, no 5 (1987).

  • (4) - MATT (D.) -   Étude de deux structures originales de machine à réluctance variable poly-entrefer  -  . Thèse de doctorat, université de Paris-VI (1987).

  • (5) - KAHLEN (K.), DE DONCKER (R.W.) -   New concept of spherical actuator with three degrees of freedom  -  . Actuator 2000, Brème, Allemagne (19-21 juin 2000).

  • (6) - BUSCH (T.), HENNEBERGER (G.) -   Development...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conversion de l'énergie électrique

(269 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS