Présentation
EnglishRÉSUMÉ
Un matériau est dit énergétique s’il peut libérer de l’énergie en un temps très court, cette énergie potentielle stockée sous forme chimique provenant d’un arrangement non optimisé de ces atomes. Ces matériaux énergétiques présentent des enthalpies de formation plutôt positives et des densités souvent élevées. Quant à leurs applications, l’énergie dégagée par la réaction exothermique peut être mise à profit sous forme de chaleur (pour chauffer rapidement des conserves), ou pour fournir un travail mécanique (matériaux pour la propulsion ou explosifs).
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Didier MATHIEU : Docteur en chimie physique - Ingénieur de recherche
-
Sylvain BEAUCAMP : Doctorant - Commissariat à l’énergie atomique - Centre d’études du Ripault
INTRODUCTION
Dès lors que ses atomes ne sont pas disposés selon l’arrangement le plus stable, un matériau quelconque renferme de l’énergie potentielle stockée sour forme chimique. Ce matériau est dit énergétique si cette énergie est susceptible d’être libérée en un temps très court (inférieur à quelques fractions de seconde) lors d’une réaction exothermique (combustion).
Cet article constitue une introduction aux matériaux énergétiques, avec un accent sur la conception de nouveaux produits. Des ouvrages et articles de synthèse sont disponibles pour plus d’informations sur la chimie [1] [2] et la physique [3] [4] de ces matériaux.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Sciences fondamentales > Physique Chimie > Fondamentaux en chimie > Matériaux énergétiques > Théorie
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Théorie
5.1 Combustion adiabatique
Les performances des matériaux énergétiques dépendent des caractéristiques des gaz de combustion, qu’il est possible d’estimer par des approches purement thermodynamiques. La description de la décomposition est particulièrement simple en l’absence d’échange de chaleur avec l’extérieur. Cette hypothèse adiabatique implique soit une réaction trop rapide pour permettre ces échanges (explosion), soit une réaction dans une enceinte relativement isolée (chambre de combustion).
HAUT DE PAGE
Pour une réaction adiabatique, les échanges d’énergie du système avec son environnement sont nuls (à volume constant) ou se réduisent au travail de pression. Dans le premier cas, son énergie est constante. Dans le second cas, pour une pression donnée, son enthalpie ne varie pas. Autrement dit, l’enthalpie initiale du matériau (égale à son enthalpie de formation Δ f H o si ce dernier est dans l’état thermodynamique standard) est égale à celle des produits de la réaction. Pour un état final constitué par différents produits P en proportions n P , le bilan énergétique peut s’écrire :
à condition de pouvoir négliger les interactions entre ces produits (ce qui est le cas pour une phase gazeuse suffisamment détendue). Dans le cas contraire, l’enthalpie des produits peut s’exprimer en fonction de leur pression et de leur densité, à condition de disposer de leur équation d’état 5.2...
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Théorie
BIBLIOGRAPHIE
-
(1) - AKHAVAN (J.) - The chemistry of explosives. - Royal Society of Chemistry (1998).
-
(2) - PAGORIA (P.F.), LEE (G.S.), MITCHELL (A.R.), SCHMIDT (R.D.) - Thermochimica Acta, - 384, p. 187-204 (2002).
-
(3) - BORGHI (R.), DESTRIAU (M.) - La combustion et les flammes. - Technip (1995).
-
(4) - ODIOT (S.) éd - Approches microscopique et macroscopique des détonations. - Éditions de Physique (1988).
-
(5) - LAURENCE livermore national laboratory - * - http://www-cms.llnl.gov/s-t/nanoscale_chemistry.html
-
(6) - WILSON (K.J.) - High energy-density materials : The role of predictive theory. - Ph thesis, université de Floride (2002).
-
...
ANNEXES
MATEOS (D.) - Transformation de matériaux énergétiques par oxydation hydrothermale : étude cinétique globale et simulation du procédé en régime permanent sur des composés modèles. - Université de Bordeaux I (2003).
MASSONI (J.) - Un modèle micromécanique pour l’initiation par choc et la transition vers la détonation dans les matériaux solides hautement énergétiques. - Université-Aix-Marseille I (1999).
PEUGEOT (F.) - Étude de la vulnérabilité de matériaux énergétiques à l’agression par jet de charge creuse. - Université de Poitiers (1997).
HAUT DE PAGECet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive