Présentation

Article

1 - GÉNÉRALITÉS

2 - CALCUL SIMPLIFIÉ D’UNE FLAMME DE DIFFUSION LAMINAIRE

3 - EXTENSION - UTILISATION DU SCALAIRE PASSIF Z

4 - FLAMMES DE DIFFUSION LAMINAIRES ÉTIRÉES

5 - STABILISATION DES FLAMMES DE DIFFUSION

Article de référence | Réf : BE8320 v1

Extension - utilisation du scalaire passif Z
Flamme de diffusion laminaire

Auteur(s) : Denis VEYNANTE

Date de publication : 10 avr. 1999

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

Auteur(s)

  • Denis VEYNANTE : Directeur de recherche au Centre national de la recherche scientifique CNRS

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

La combustion est aujourd’hui un des principaux moyens de conversion de l’énergie. Elle est utilisée dans de nombreux systèmes pratiques aussi bien pour produire de l’énergie thermique (chaudières ou fours domestiques et industriels) ou de l’électricité (centrales thermiques), que pour le transport (moteurs automobiles et aéronautiques, moteurs fusée, ...) ou encore la destruction de déchets (incinérateurs). La combustion peut être caractérisée comme une (ou des) réaction(s) irréversible(s) fortement exothermique(s) entre un combustible (ou réducteur) et un comburant (ou oxydant) selon le schéma global :

Cette réaction induit un fort dégagement de chaleur qui a lieu dans une zone très mince (les flammes les plus courantes ont des épaisseurs δL typiques de l’ordre de 0,1 à 1 mm) conduisant à des gradients thermiques très élevés (le rapport des températures absolues entre gaz brûlés et gaz frais, Tb / Tu , est de l’ordre de 5 à 7) et à de larges variations de la masse volumique ρ.

Les combustibles les plus divers, qu’ils soient gazeux, liquides ou solides peuvent être utilisés. Parmi les plus courants, citons le bois, le charbon, les hydrocarbures (méthane CH4 , propane C3H8 , essence, gasoil, kérozène, fioul, ...), l’hydrogène (H2)... Le comburant est le plus souvent l’oxygène de l’air, plus exceptionnellement de l’oxygène pur (moteurs-fusée, certains fours industriels) qui permet d’atteindre des températures plus élevées et éviter le stockage d’azote inerte mais pose des problèmes de sécurité. Plus rarement, d’autres comburants sont utilisés (moteurs fusée pyrotechniques).

Dans de nombreux systèmes pratiques, combustible et comburant sont injectés séparément dans la zone de réaction, sans prémélange initial. La combustion est alors contrôlée non seulement par la réaction chimique mais aussi par le transport diffusif des réactifs l’un vers l’autre, d’où le nom de flamme de diffusion.

Si les flammes de diffusion laminaires semblent n’intervenir que dans quelques applications plutôt anecdotiques (bougie, flamme de briquet, ...), nous allons montrer que la compréhension de la structure de ces flammes est fondamentale pour la description et la modélisation de nombreuses situations industrielles.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-be8320


Cet article fait partie de l’offre

Physique énergétique

(73 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

3. Extension - utilisation du scalaire passif Z

3.1 Définitions

En général, à la définition simple du scalaire passif de la relation [6], on préfère :

φ est le rapport d’équivalence de la réaction, défini par :

Il est facile de montrer que Z ainsi défini est également un scalaire passif (il s’agit, en fait, d’un adimensionnement du scalaire passif défini par la relation [6] qui vérifie l’équation de convection-diffusion, sans terme source) :

Le scalaire passif Z, appelé aussi fraction de mélange, a les propriétés intéressantes suivantes :

  • Z = 1 dans l’écoulement de combustible pur ;

  • Z = 0 dans l’écoulement d’oxydant pur ;

  • dans l’hypothèse d’une chimie infiniment rapide, la flamme se situe sur l’isosurface Z = Zst telle que YF = YO = 0 :

    qui...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique énergétique

(73 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Extension - utilisation du scalaire passif Z
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) -   *  -  Les références présentées ici se limitent volontairement à quelques livres de base et articles de revue

  • (2) - BORGHI (R.), DESTRIAU (M.) -   La combustion et les flammes.  -  Technip 1995.

  • (3) - KUO (K.K.) -   Principles of Combustion.  -  Wiley-Interscience 1986.

  • (4) - TURNS (S.R.) -   An introduction to combustion, concepts and applications.  -  Series in Mechanical Engineering Mc Graw-Hill 1996.

  • (5) - VERVISCH (L.), POINSOT (T.) -   Direct numerical simulation of non-premixed turbulent flames.  -  Annual Rev. Fluid Mech. 30 p. 655-691 1998.

  • (6) - WILLIAMS (F.A.) -   Combustion Theory.  -  Benjamin-Cummings 1985.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique énergétique

(73 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS