Présentation
EnglishRÉSUMÉ
L’énergie géothermique constitue une ressource importante à l’échelle mondiale pour la production d’électricité et l’utilisation directe de chaleur. Il s’agit d’une énergie dont la production peut être continue et exploitée dans la plupart des régions du monde. Le fait même de pouvoir accéder à l’énergie géothermique en continu présente l’avantage majeur d’éviter de devoir la stocker. Sans considérer les ressources géothermiques aux températures les plus élevées qui existent généralement dans les zones volcaniques du globe, les puits géothermiques à basse énergie sont également en mesure de produire de l’énergie d’une manière économiquement attrayante. Le rôle des ingénieurs en matériaux ou en corrosion est alors capital pour sélectionner judicieusement des matériaux et les technologies permettant de prévenir la corrosion dans ces puits géothermiques et dans les installations de surface.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
A.I. (Sandy) WILLIAMSON : Ingénieur - Président de Williamson Integrity Services Ltd, Calgary, Alberta, Canada
INTRODUCTION
La géothermie fait appel aux températures naturellement élevées présentes sous la surface de la Terre afin de produire de l’énergie. Il existe diverses méthodes qui impliquent généralement de forer des puits sur une profondeur comprise entre environ un et trois kilomètres pour accéder aux réservoirs d’eaux souterraines et bénéficier de la chaleur dégagée. Des réservoirs à haute température se trouvent dans plusieurs zones volcaniques du monde, comme par exemple en Nouvelle-Zélande, en Islande et aux États-Unis. Ces réservoirs sont suffisamment chauds pour produire de la vapeur en surface. La vapeur est transportée dans des canalisations vers une centrale électrique, où elle est convertie en électricité. Sans constituer une ressource de température élevée parmi les plus chaudes (< 150 °C), l’énergie géothermique à basse énergie (BE) est toutefois capable de produire de l’énergie d’une manière économiquement viable. La source d’eau chaude trouvée dans les réservoirs géothermiques BE peut être utilisée pour générer de la vapeur, qui entraîne une turbine pour produire de l’électricité. Cette eau chaude peut également servir de source de chauffage directe pour des bâtiments, tels que les serres, par exemple.
De nombreuses centrales géothermiques BE sont en activité depuis plusieurs années dans le monde entier, en particulier en Europe. Dans l’Ouest canadien, des réservoirs similaires à ceux d’Europe sont actuellement en cours d’évaluation pour la production d’énergie géothermique BE. Ces réservoirs renfermant des fluides (eau et gaz) de compositions très variables, notamment la teneur en saumure, il est nécessaire de procéder à un examen minutieux afin de lutter contre la corrosion et l’entartrage lors de leur exploitation. Cet article a pour objectif de mettre en lumière les paramètres les plus importants ayant un impact sur les mécanismes de corrosion et de dégradation dans les puits de production et d’injection, mais également d’exposer les défis en matière de sélection et de corrosion des matériaux auxquels est confrontée l’équipe de conception, et enfin de proposer certaines solutions pour atténuer le risque de corrosion. Les équipements suivants seront donc abordés : tubage, colonne, tête de puits et composants de fond, comme par exemple les garnitures d’étanchéité ou la pompe submersible électrique (PSE).
Tout d’abord, un système de classification des ressources géothermiques sera examiné afin de mieux comprendre les mécanismes de dégradation et l’expérience des matériaux avec les types de puits géothermiques BE.
Par la suite, la composition en eau produite et en gaz ainsi que les conditions du puits, comme la pression et la température, seront abordées pour comprendre les mécanismes potentiels de dégradation pouvant survenir dans les puits géothermiques BE. En outre, les puits de production et d’injection seront détaillés sous forme de « zones » dans lesquelles les mêmes ensembles de mécanismes de dégradation sont susceptibles de se produire.
En Europe, l’exploitation des ressources géothermiques BE datant de plusieurs années, l’article mettra l’accent sur certains des enseignements tirés de ces ressources quant à la corrosion et au choix des matériaux.
Des matériaux fortement alliés, généralement classés comme alliages résistants à la corrosion (ARC), étant utilisés pour des applications spécifiques dans les puits de production et d’injection, des exemples d’utilisation de ces alliages pour les puits géothermiques BE seront donnés. Les revêtements, qu’ils soient métalliques ou non, seront également abordés. Enfin, le recours à des inhibiteurs de corrosion pour diminuer la corrosion au fond de ces puits sera évoqué.
Pour terminer, cet article donnera des exemples de techniques de surveillance et d’inspection de la corrosion permettant à l’équipe d’exploitation d’évaluer l’intégrité du fond de ces puits.
MOTS-CLÉS
réservoirs géothermiques alliage résistant à la corrosion (ARC) surveillance de la corrosion conception d'un puits
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Matériaux > Corrosion Vieillissement > Méthodes de prévention et lutte contre la corrosion > Sélection et corrosion des matériaux dans les puits géothermiques à basse énergie > Surveillance de la corrosion
Accueil > Ressources documentaires > Matériaux > Corrosion Vieillissement > Matériaux : résistance à la corrosion et au vieillissement > Sélection et corrosion des matériaux dans les puits géothermiques à basse énergie > Surveillance de la corrosion
Cet article fait partie de l’offre
Ressources énergétiques et stockage
(192 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
9. Surveillance de la corrosion
Plusieurs méthodes de surveillance de la corrosion permettent d’évaluer l’intégrité des puits de production et d’injection au cours de leur utilisation, comme par exemple :
-
la diagraphie du tubage (ou carottage électrique) qui consiste à retirer le tube de la colonne puis à insérer un outil d’inspection qui utilise des capteurs électromagnétiques. Une inspection du tubage de base est recommandée au début de la période d’exploitation d’un puits, la « signature » de la base pouvant être utilisée pour valider les indications de perte de métal dans les diagraphies ultérieures ;
-
l’inspection visuelle de la colonne de production et de la PSE peut être effectuée au cours de l’entretien de routine de cette dernière. En outre, le recours à un dispositif d’inspection portable du tube de la colonne, basé sur des techniques électromagnétiques, est possible et permet de contrôler les surfaces internes/externes ;
-
l’inspection par ultrasons, radiographiques et visuelles peut être réalisée sur l’équipement de tête de puits (vannes, duses, etc.) ;
-
un échantillonnage régulier des fluides du puits est recommandé pour permettre d’analyser les tendances d’entartrage et les caractéristiques de corrosion des fluides ;
-
des sondes de pH et d’oxygène en ligne sont recommandées en aval de la tête de puits afin d’assurer un suivi des fluides du puits ;
-
il est également recommandé de placer en aval de la tête de puits des coupons de corrosion et des sondes de corrosion en ligne (résistance électrique et résistance de polarisation linéaire). Ces sondes sont généralement installées dans des raccords d’accès normalisé comme ceux illustrés sur la figure 8. Des modules de tuyauteries permettant de dériver les fluides du puits sont utiles en cas de remplacement des sondes . Les coupons de corrosion peuvent être...
Cet article fait partie de l’offre
Ressources énergétiques et stockage
(192 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Surveillance de la corrosion
BIBLIOGRAPHIE
-
(1) - ELLIS (P.F.), CONOVER (M.F.) - Materials selection guidelines for geothermal energy utilization systems - (1981).
-
(2) - WOOD GROUP - Corrosion Review and Materials Selection for Geothermal Wells Report - (2017).
-
(3) - KLAPPER (H.) et al - Addressing Integrity Issue in Downhole Equipment by Corrosion Inhibition in Sweet Geothermal Brines - Corrosion, document n° 13364 (2019).
-
(4) - UNGEMACH (P.) - Handling of Corrosion and Scaling Shortcomings in Low Enthalpy Geothermal Environments - (1994).
-
(5) - MUNDHENK (N.) et al - Corrosion and Scaling in the geothermal cycle of Soultz-sous-Forets (France). - Corrosion, document n° 3897 (2014).
-
(6) - SEIERSTEN (M. et al - Corrosion in and Enhanced Geothermal System (EGS). - 16th...
Cet article fait partie de l’offre
Ressources énergétiques et stockage
(192 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive