Présentation
En anglaisAuteur(s)
-
Alain BRICARD : Ingénieur du Conservatoire National des Arts et Métiers - Ingénieur de Recherche au Centre d’Études Nucléaires de Grenoble
-
Lounès TADRIST : Docteur ès Sciences Physiques - Directeur de Recherches au Centre National de la Recherche Scientifique - Institut Universitaire des Systèmes Thermiques Industriels de Marseille
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
À coté des échangeurs de chaleur conventionnels qui assurent un transfert de chaleur au travers d’une paroi matérielle entre deux fluides à des températures différentes, on trouve toute une gamme de dispositifs industriels où la paroi d’échange est supprimée : tours de refroidissement, échangeurs récupérateurs solide-gaz, contacteurs gaz-liquide pour le chauffage d’eau à partir d’effluents gazeux, humidificateurs d’air, condenseurs à bulles et barométriques.... Les échangeurs à contact direct restent cependant assez peu répandus du fait de contraintes intrinsèques et d’une méconnaissance des comportements hydrodynamique et thermique de ces systèmes où interviennent des processus physiques complexes (milieux multiphases en écoulement avec ou sans changement d’état). Il est bien clair que les échangeurs à contact direct ne sont pas une panacée, mais dans certains cas spécifiques ils constituent une alternative intéressante car ils offrent la possibilité de réduire le coût d’investissement et d’accroître les performances d’échange par rapport à un échangeur classique. On présente ici les bases nécessaires à la compréhension et au dimensionnement des échangeurs thermiques fonctionnant sur le principe du contact direct ; mode de transfert de chaleur au demeurant courant dans la nature, puisqu’il intervient, en particulier, dans le cycle de l’eau entre la terre et l’atmosphère par évaporation et condensation, dans la formation de brouillard et de neige dans l’atmosphère, dans la gélification de l’eau des rivières et dans la solidification de la lave, etc...
Pour les notations et symboles, se reporter en fin d’article (p. 29).
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Thermique pour l’industrie
(37 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
6. Échange de chaleur avec transition de phase liquide à vapeur
La génération ou la condensation d’une vapeur par contact direct, au demeurant courantes dans la nature, sont souvent utilisées de façon anodine dans de nombreuses applications. Nous pouvons citer en exemple l’évaporation et la condensation de l’eau, le chauffage de lait par la condensation directe de vapeur d’eau, la pulvérisation et l’évaporation de gouttelettes d’eau pour tempérer l’air ambiant, le séchage de solides, l’ébullition pour séparer des liquides.... Nous allons étudier successivement ces trois mécanismes qui mettent en jeu la transition de phase liquide-vapeur.
6.1 Échange en évaporation
6.1.1 Mécanisme et relations de base
Lorsque l’agitation thermique dans un liquide devient importante, il se produit un départ des molécules sous forme de vapeur à l’interface liquide-vapeur, dont la vitesse massique est donnée par :
avec :
- R :
- constante des gaz parfaits
- Mv :
- masse molaire du liquide
- pl et pv :
- respectivement pression du liquide et de la vapeur au-dessus du liquide.
Si l’évaporation se produit dans une enceinte fermée, les molécules de vapeur s’accumulent et se condensent et la pression de la vapeur augmente. Si l’espace est ouvert les molécules de vapeur se déplacent par diffusion et par convection dans la phase gazeuse constituée du mélange air-vapeur. En régime permanent, la vitesse massique de la vapeur, dans un repère fixe suivant la direction verticale, peut se séparer en deux termes [27] :
-
un terme convectif qui rend compte du mouvement d’ensemble des deux fluides ;
-
un...
Cet article fait partie de l’offre
Thermique pour l’industrie
(37 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Échange de chaleur avec transition de phase liquide à vapeur
BIBLIOGRAPHIE
-
(1) - PERRY (R.H.) (coordinateur) - Chemical engineers' handbook. - McGraw-Hill New York 1984.
-
(2) - KOLEV (N.I.) - Fragmentation and Coalescence Dynamics in Multiphase Flows. - Experimental Thermal and Fluid Science 6 p. 211-251 1993.
-
(3) - CLIFT (R.), GRACE (J.R.), WEBER (M.E.) - Bubbles, Drops and Particles. - Academic New York 1979.
-
(4) - HESTRONI (G.) - Handbook of Multiphase Systems. - Hemisphere Publishing Corporation Washington New-York London 1982.
-
(5) - WALLIS (G.B.) - One-dimensionnal two-phase flow. - McGraw-Hill 1969.
-
(6) - RICHARDSON (J.S.), ZAKI (W.N.) - Sedimentation and fluidisation. - Trans. Inst. Chem. Eng. Vol. 32 p. 37-53 1954.
-
...
DANS NOS BASES DOCUMENTAIRES
-
Techniques de mises en contact entre phases solides et gazeuses.
-
Transferts de chaleur avec changement d'état solide-liquide.
-
Transferts de chaleur : ébullition ou condensation des corps purs.
Ouvrages généraux
KREITH (F.) - BOEHM (R.F.) - Direct Contact Heat Transfer. - Hemisphere Publishing Corporation 1988.
Les sels fondus. - Usine nouvelle Fév. 1974.
MORI (Y.H.) - Classification of configuration of two-phase vapor/liquid bubbles in an immiscible liquid in relation to direct contact evaporation and condensation processes. - Int. J. Multiphase Flow No 4 p. 571-579 1985.
SACADURA (J.F.) - Initiation aux transferts thermiques. - 1993 Technique et Documentation 11 rue Lavoisier 75008 Paris.
HAUT DE PAGE
SEILER-MARIE (N.) - Modélisation et simulation des phénomènes d’ébullition et du transfert de chaleur dans la zone d’impact d’un jet sur une plaque chaude. - Institut national polytechnique de Toulouse (2004).
HAUT DE PAGECet article fait partie de l’offre
Thermique pour l’industrie
(37 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive