Présentation
EnglishRÉSUMÉ
Né à la fin des années 1950, le concept de combustible à particules de taille millimétrique est le concept de référence des réacteurs à haute ou très haute température à caloporteur gaz, appelés High or Very High Temperature gas cooled Reactor. La spécificité de ce combustible est qu’il est finement divisé, tout céramique et micro-confiné, ces trois particularités combinées permettant à la fois l’accès aux hautes températures et à un haut niveau de sûreté.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Michel PELLETIER : Ingénieurs au Commissariat à l’Énergie Atomique
INTRODUCTION
Né à la fin des années 1950, le concept de combustible à particules de taille millimétrique est le concept de référence des réacteurs à haute ou très haute température à caloporteur gaz (High or Very High Temperature gas cooled Reactor HTR/VHTR). La spécificité de ce combustible est qu’il est finement divisé, tout céramique (combustible et couches de revêtement) et micro-confiné (le confinement des actinides et des produits de fission se fait au plus près de la source), ces trois particularités combinées permettant à la fois l’accès aux hautes températures et à un haut niveau de sûreté (dossier BN 3 190, Réacteurs à haute température, § 4, sûreté).
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Génie nucléaire
(170 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Retraitement du combustible à particules
4.1 Enjeux et options de retraitement
Le cycle du combustible le plus envisagé pour la filière HTR consiste en une irradiation en un seul passage en réacteur, suivi par le stockage direct des combustibles usés (cycle ouvert). Néanmoins, d’une part, le volume important de graphite en présence (tableau 2) et, d’autre part, le respect des principaux critères définis par le forum international « Génération IV », en particulier celui du développement durable, conduisent naturellement à proposer , comme alternative au stockage direct, un recyclage U-Pu ou groupé de l’ensemble des actinides contenus dans le combustible usé, associé à une gestion séparée du graphite et des produits de fission.
Ainsi, trois modes de gestion des déchets de la filière HTR sont possibles (figure 7) :
-
voie A : stockage direct en l’état de l’ensemble des déchets de structure et des combustibles ; cette option ne suppose aucun traitement ni recyclage de matière, mais elle est très pénalisante en terme de volume de déchets à stocker ;
-
voie B : défabrication des éléments combustibles, séparation des particules et du graphite des compacts, stockage des particules précédé éventuellement d’un conditionnement de celles-ci ; décontamination, conditionnement ou recyclage du graphite ;
-
voie C : analogue à la stratégie B, complétée par le retraitement des particules dans l’optique du recyclage intégral des actinides et conditionnement des produits de fission et du carbone.
4.2 Stockage direct
La connaissance du comportement du combustible usé HTR en stockage direct de très longue durée nécessite d’identifier et de quantifier :
-
les différents termes source en radionucléides ;
-
les...
Cet article fait partie de l’offre
Génie nucléaire
(170 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Retraitement du combustible à particules
BIBLIOGRAPHIE
-
(1) - NICKEL (H.), NABIELEK (H.), POTT (C.), MEHNER (A.W.) - Long time experience with the development of HTR fuel elements in Germany - . Nuclear Engineering and Design, 217, 141-151 (2002).
-
(2) - SAWA (K.), TOBITA (T.), MOGI (H.), SHIOZAWA (S.), YOSHIMUTA (S.), SUZUKI (S.), DEUSHI (K.) - Fabrication of the First Loading Fuel of the High Temperature Engineering Test Reactor - – Journal of Nuclear Science and Technology, Vol. 36, no 8, 683-690 (1999).
-
(3) - WU (Z.), LIN (D.), ZHONG (D.) - The design features of the HTR-10 - – Nuclear Engineering and Design, 218, 25-32 (2002).
-
(4) - TANG (C.), TANG (Y.), ZHU (J.), ZOU (Y.), LI (J.), NI (X.) - Design and manufacture of the fuel element for the 10 MW high temperature gas-cooled reactor - . Nuclear Engineering and Design, 218, 91-102 (2002).
-
(5) - KOSTER (A.), MATZNER (H.D.), NICHOLSI (D.R.) - PBMR design for the future - . Nuclear Engineering and Design, 222, 231-245 (2003).
-
...
Cet article fait partie de l’offre
Génie nucléaire
(170 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive