Présentation
EnglishRÉSUMÉ
Les études réalisées par les physiciens des réacteurs nécessitent d'accéder aux grandeurs physiques d'intérêt telles que la puissance du réacteur, les flux de particules, les concentrations de nucléides. Pour cela, il faut résoudre les équations qui gouvernent la propagation des neutrons dans l'espace et dans le temps et celles qui régissent l'évolution temporelle des concentrations des nucléides présents et formés dans les différents matériaux composant le combustible et l'ensemble des structures du réacteur. Pour compléter, l'évolution du combustible et la cinétique sont traitées, ainsi que les aspects multi-physiques. Quelques exemples de logiciels de calcul sont décrits.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Christine POINOT-SALANON : Adjointe scientifique, CEA/Sac/DEN/DANS/DM2S/SERMA
-
Anne NICOLAS : Chef de projet, CEA/Sac/DEN/DANS/DM2S/SERMA
-
Michel SOLDEVILA : Chef de projet, CEA/Sac/DEN/DANS/DM2S/SERMA
INTRODUCTION
Les études réalisées par les physiciens des réacteurs nécessitent d'accéder aux grandeurs physiques d'intérêt telles que la puissance du réacteur, les flux de particules, les concentrations de nucléides. Pour cela, il faut résoudre les équations qui gouvernent la propagation des neutrons dans l'espace et dans le temps (équation de Boltzmann et de la cinétique) et celles qui régissent l'évolution temporelle des concentrations des nucléides présents et formés dans les différents matériaux composant le combustible et l'ensemble des structures du réacteur (équations de Bateman).
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Génie nucléaire
(170 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
7. Démarche de vérification, validation des codes de calcul neutronique
7.1 Démarche de vérification et validation des codes de calcul neutronique
La démarche de vérification, validation et qualification (VVUQ, acronyme de l'anglais Verification, Validation and Uncertainty Quantification) d'un outil de calcul scientifique est le processus consistant à évaluer sa capacité à prédire des phénomènes réels pour un champ d'applications définies. Elle vise en particulier à aboutir à la quantification des incertitudes et à la maîtrise des biais de calcul associés aux grandeurs utilisées et/ou obtenues dans les études réalisées avec cet outil.
HAUT DE PAGE7.1.1 Deux étapes classiques : la vérification et la validation des codes
La vérification est la démarche permettant de s'assurer que les équations du modèle physique utilisées dans le code de calcul sont résolues correctement aux plans mathématique, numérique et informatique. La démarche peut concerner un seul, plusieurs ou l'ensemble des phénomènes physiques traités. La vérification peut comprendre la confrontation avec des cas de calcul solubles analytiquement, ou résolus par un code supposé de référence. Ce dernier est un code dans lequel on a confiance parce qu'il a déjà passé avec succès les différentes étapes de la démarche VVUQ. Dans le cas particulier de la neutronique, la mise à disposition de deux grands types d'outils de calcul indépendants (les codes déterministes et les codes de Monte-Carlo, comme explicité précédemment) facilite la vérification par comparaisons croisées entre les calculs. Dans cette étape de vérification, la précision des données d'entrée du code n'a pas une importance cruciale : il suffit que lesdites données soient identiques dans les calculs comparés.
La deuxième étape est celle de la validation, démarche permettant de s'assurer que les résultats d'une simulation numérique issue du code dûment vérifié au préalable reproduisent l'expérience. Les deux points testés dans cette étape sont la qualité des données d'entrée et la taille du domaine de validité V du modèle dans l'espace de ses paramètres (figure 21)....
Cet article fait partie de l’offre
Génie nucléaire
(170 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Démarche de vérification, validation des codes de calcul neutronique
BIBLIOGRAPHIE
-
(1) - BOLTZMANN (L.) - Weitere studien über das würmegleichgewicht unter gas molekulem. - Wiener Berichte, 66, p. 275-370 (1872).
-
(2) - REUSS (P.) - Précis de neutronique. - EDP sciences.
-
(3) - REUSS (P.) - Traité de neutronique. - Collection Enseignements des Sciences.
-
(4) - WHITESIDES (G.E.) - Difficulty in computing the h-effective of the world. - Trans. Ann. Nucl. Soc., 14, no 2, p. 680 (1971).
-
(5) - DUDERSTADT (J.J.), MARTIN (W.R.) - La Neutronique. - Monographie de la Direction de l'Énergie Nucléaire du CEA, Éditions Le Moniteur, « Transport Theory », J. Wiley & Sons, New-York, USA (1979).
-
(6) - HÉBERT (A.) - Applied reactor physics. - Presses Internationales Polytechnique.
-
...
ANNEXES
Code DRAGON http://www.polymtl.ca/nucleaire/DRAGON/
Code SCALE https://www.ornl.gov/onramp/scale-code-system
HAUT DE PAGECet article fait partie de l’offre
Génie nucléaire
(170 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive